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CUBIC RINGS AND THEIR IDEALS

YURIY A. DROZD AND RUSLAN V. SKURATOVSKII

Abstract. We give an explicit description of cubic rings over a
discrete valuation ring, as well as a description of all ideals of such
rings.

Introduction

Ideals of local rings have been studied by a lot of authors from quite
different viewpoints. One of the questions that arise with this respect
is on the number of parameters par(C) defining the ideals of such a
ring C up to isomorphism, especially when it is reduced and of Krull
dimension 1. Certainly, it makes sense if the residue field k is infinite.
In [8] it was shown that par(C) = 0, i.e. C has a finite number of
ideals (up to isomorphism), if and only if C is Cohen–Macaulay finite,
i.e. has a finite number of indecomposable non-isomorphic Cohen–
Macaulay modules (in the 1-dimensional reduced case they coincide
with torsion free modules). Then Schappert [12] proved that a plane
curve singularity has at most 1-parameter families of ideals if and only
if it dominates one of the strictly unimodal plane curve singularities
in the sense of [14], or, the same, unimodal and bimodal plane curve
singularities in the sense of [1]. In [7] this result was generalized to all
curve singularities. Note that this time par(C) = 1 does not imply that
C is Cohen–Macaulay tame, i.e. has at most 1-dimensional families of
indecomposable Cohen–Macaulay modules. Tameness means that C

dominates a singularity of type Tpq [5]. The case par(C) > 1 had
not been studied before the second author described the one branch
singularities of type W such that par(C) ≤ 2 [13].
In this paper we study the cubic rings. We describe all such rings,

their ideals and, in particular, establish the value par(C) for any cubic
ring C. As a consequence, we show that a cubic ring is Gorenstein if
and only if it is a plane curve singularity (i.e. its embedding dimension
equals 2).

1. Generalities

We denote byD a discrete valuation ring with the ring of fractionsK,
the maximal ideal m = tD and the residue field k = D/tD. A cubic

ring over D is, by definition, a D-subalgebra C in a 3-dimensional
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semisimple K-algebra L, which is a free D-module of rank 3. We
also denote A the integral closure of D in L and always suppose that
A is finitely generated as C-module. Equivalent condition (see, for

instance, [3]): the m-adic completion Ĉ of the ring C has no nilpotent
elements. It is always the case if the algebra L is separable, for instance,
if charK = 0. We also set Am = tmA + D and Jm = tAm−1 =
radAm (m > 0).
In what follows, an ideal means a fractional C-ideal in K, i.e. a

finitely generated C-submodule M ⊆ K such that KM = K. Then
M is a free D-module of rank 3. We are going to describe all ideals of
cubic rings up to isomorphism. It is known (see, for instance, [9]) that

there is a one-to-one correspondence between C-ideals and Ĉ-ideals,
mapping M to its m-adic completion. This correspondence reflects

isomorphisms, i.e. maps non-isomorphic ideals to non-isomorphic. So,
in what follows we may (and will) suppose that D is complete with
respect to the m-adic topology.
Recall also that the embedding dimension edimC of a local noether-

ian ring C with the maximal ideal J and the residue filed k is defined
as dimk J/J

2. If C is of Krull dimension 1 and edimC = 2, C is called
a plane curve singularity. In the geometric case, when C contains a
subfield of representatives of k, it actually means that there is a plane
curve C such that C is the completion of the local ring of a singular
point x ∈ C.
From the general theory of ramification in finite extensions we see

that the following cases can happen:

One branch, ramified case: L is a field, the maximal ideal of
A equals τA, A/τA ≃ k and tA = τ 3A.

One branch, non-ramified case: L is a field, the maximal ideal
of A equals tA and A/tA = k[θ̄] is a cubic extension of the
field k, where θ̄ is a root of an irreducible cubic polynomial
f(x) ∈ k[x].

Two branches, ramified case: L = K1 × K, where K1 is a
quadratic extension of K, A = D1 × D, the maximal ideal of
D1 is τD1, D1/τD1 ≃ k and tD1 = τ 2D1.

Two branches, non-ramified case: L = K1 ×K, where K1 is
a quadratic extension of K, A = D1 ×D, the maximal ideal of
D1 is tD1 and D1/τD1 = k[θ̄] is a quadratic extension of the
field k, where θ̄ is a root of an irreducible quadratic polynomial
f(x) ∈ k[x].

Three branches case: L = K3, A = D3.

We recall [10, 2] that, for any cubic ring C, every ideal of C is
isomorphic either to an over-ring of C, i.e. a cubic ring B such that
C ⊆ B ⊂ L, or to the dual ideal B∗ = HomD(B,D) of such an
over-ring. Hence, to describe all ideals of C, we only need to describe
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over-rings of C. Obviously, any cubic ring in L contains some Am.
Therefore, to describe all cubic rings (so their ideals as well), we have
to describe the over-rings of Am. If B is an over-ring of C, they also
say that B dominates C.
Since the unique (up to isomorphism) A-ideal is A itself, we proceed

by induction: supposing that all over-rings of Am are known, we find
all over-rings of Am+1. If C is an over-ring of Am+1, then B = CAm is
an over-ring of Am, tB ⊂ C and C/tB is a k-subalgebra in B/tB. If
B ⊇ Am−1, then tB ⊇ Jm, hence, C ⊇ Jm +D = Am. Therefore, the
following procedure gives all over-rings of Am+1 which are not over-
rings of Am:

Procedure.

• For every over-ring B of Am, which is not an over-ring of Am−1,
calculate B̄ = B/tB. Set Ā = (Am + tB)/tB ⊆ B̄.

• Find all proper subalgebras S ⊂ B̄ such that ĀS = B̄. Equiv-
alently, the natural map S → B/BJm must be surjective.

• For each such S take its preimage in B.

2. Calculations

2.1. One branch, ramified case. We set

C2r(α) = D+ trαD+ t2rA, where v(α) = 1,

C2r+1(α) = D+ trαD+ t2r+1A, where v(α) = 2,

where v is the discrete valuation related to the ring A, i.e. v(α) = k
means that α ∈ τ kD \ τ k+1D. Note that C0(α) = A. Obviously, α can
be uniquely chosen as τ + aτ 2 for C2r and as τ 2+ atτ for C2r+1, where
a ∈ D is defined modulo tr.

Theorem 2.1. Every over-ring of Am coincides with tkCr(α) +D for

some k, r such that r + k ≤ m and some α. The rings Cr(α) are just

all plane curve singularities in this case.

Proof. Form = 1 it is easy and known [8, 11]. So, we use the Procedure
for m > 1, setting B = tkCr(α) + D, where k + r = m. Then the
basis of B̄ consists of the classes of the elements {1, thα, tmτ s}, where
h = k + [r/2], s ∈ {1, 2} and s ≡ r (mod 2). Since thα /∈ Jm, the
subalgebra S necessarily contains the class of thα + ctmτ s for some
c ∈ D. If k = 0, then m = r and v(tmτ s) = 2v(thα). Therefore, B̄
has no proper subalgebra containing the class of thα+ ctmτ s. If k > 0,
the preimage of S is D + (thα + ctmτ s)D + tm+1A. It coincides with
tk−1Cr+2(α

′) +D where α′ = α + ctm−hτ s.
Now one easily checks that edimCr(α) = 2, while edimC = 3 for all

other rings. �
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2.2. One branch, non-ramified case. We set Cr(α) = D+ trαD+
t2rA0, where α ∈ A× \ D. Again C0(α) = A0. Note that α can be
uniquely chosen as θ+ aθ2, where θ is a fixed preimage of θ̄ in D1 and
a ∈ D is defined modulo tr.

Theorem 2.2. Every over-ring of Am coincides with tkCr(α) +D for

some k, r and α with 2r + k ≤ m. The rings Cr(α) are just all plane

curve singularities in this case.

Proof. For m = 1 it is obvious. So, using the Procedure for m > 1, we
set B = tkCr(α) +D with 2r + k = m. Then a basis of B̄ consists of
the classes of elements {1, tr+kα, tmα2} for some α2 ∈ A× \ (D+ αD).
Since tr+kα /∈ Jm, S must contain the class of an element tr+kα′ =
tr+kα + ctmα2 for some c ∈ D. As above, it is impossible if k = 0. If
k > 0, then the preimage of S isD+tr+kα′+tm+1A = tk−1Cr+1(α

′)+D.
Now one easily checks that edimCr(α) = 2, while edimC = 3 for all

other rings. �

2.3. Two branches, ramified case. We denote by v the valuation
defined by the ring D1, by e the idempotent in A such that eA = D1

and set

Cl,q(α) = D+ tl(e+ tqα)D+ trA, where r = 2l + q,

Cr(α) = D+ trαD+ t2r+1A.

In both cases α ∈ D1 and v(α) = 1, where v is the valuation defined by
the ring D1. Obviously, α can be uniquely chosen as aτ , where a ∈ D

is defined modulo r. Note that C0,q(α) = D + e1D + tqA are just all
decomposable rings in this case and C0,0(α) = A.

Theorem 2.3. Every over-ring of Am coincides with either tkCl,r(α)+
D or tkCr(α)+D, where k+ r ≤ m. The rings Cl,q(α) and Cr(α) are
just all plane curve singularities in this case.

Proof. The case m = 1 is obvious. So, using the Procedure, we suppose
that m > 1 and k+ r = m. If B = tkCl,q(α) +D, a basis of B̄ consists
of the classes of {1, tk+l(e + tqα), tmτ}. Since tk+l(e + tqα) /∈ Jm, the
subalgebra S must contain the classe of tk+l(e+ tqα′) for some α′ ∈ D1

with v(α′) = 1. Again the case k = 0 is impossible. If k > 0, the
preimage of S coincides with tk−1Cl+1,q +D. If B = tkCr(α) +D, the
calculations are quite similar.
Now one easily checks that edimCl,q(α) = edimCr(α) = 2, while

edimC = 3 for all other rings. �

2.4. Two branches, non-ramified case. We set

Cl,q(α) = D+ tl(e1 + tqα)D+ trA, where r = 2l + q

and α ∈ D1 \ (e1D+ tD).
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Then α can be chosen as aθ, where θ is a fixed preimage of θ̄ in D1 and
a ∈ D is uniquely defined modulo tl. Again C0,q(α) = D+ e1D+ tqA
are just all decomposable rings in this case. Especially, C0,0(α) = A.

Theorem 2.4. Every over-ring of Am coincides with one of the rings

tkCl,q(α) +D, where k + r ≤ m. The rings Cl,q(α) are just all plane

curve singularities in this case.

We omit the proof in this case, since it practically repeats the cal-
culations in the other cases.

2.5. Three branches case. We set

Cl,q(α) = D+ tlαD+ trA,

where α = e+ tqae′, e 6= e′ are primitive idempotent in A, r = 2l + q,
a ∈ D× and a 6≡ 1(mod t) if q = 0. Obviously, a is unique modulo
tl. Again C0,q(α) = D + eD + tqA are just all decomposable rings in
this case and C0,0 = A. Note also that if C = D+ tlαD+ trA, where
α = e + ae′ as above with a ≡ 1(mod t), then, for a ≡ 1(mod tl),
C = tlC0,q(1 − e − e′) + D, and for a ≡ 1(mod tq) with 0 < q < l,
C = Cl,q(α

′) for some α′.

Theorem 2.5. Every over-ring of Am coincides with tkCl,q(α)+D for

some α and some l, q with k + r ≤ m. The rings Cl,q(α) are just all

plane curve singularities in this case.

We also omit the proof in this case, since it practically repeats the
calculations in the other cases.

2.6. Table of plane curve cubic singularities. We present in Table
1 below all plane curve cubic singularities. In this table s is the num-
ber of branches, ∗ marks the unramified cases (related to the residue
field extensions, hence impossible if k is algebraically closed); x, y are
generators of the maximal ideal, v(a) denotes the multivaluation of an
element a ∈ A, i.e. the vector of valuations of its components with re-
spect to the decomposition of A into the product of discrete valuation
rings. The column “type” shows the correspondence with the Arnold’s
classification [1, § 15]. If chark = 0 and A is ramified, it actually
shows the place of the rings in this classification. If chark = 0 and C

is non-ramified, it shows the place of the ring in this classification after
the natural extension of the field k. The validation of this column is
given in [7, Section 2.3]. Note that, following [7], we denote by El,q the
singularities Jl,q in the sense of [1]. Such notations seem more uniform.
Note also that the singularities of types E1 and E2 are actually not
cubic, but quadratic, and coincide with those of types A1 and A2 of
[1]. Finally, the last column, “par” shows the number of parameters p
from the residue field k which define a unique ring of this type. We
will consider this value in the last section. It does not coincide with
the modality in the sense of [1]; the latter equals p− 1.
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Table 1.

s name v(x) v(y) type par

1 C2r(α) (3) (3r + 1) E6r r
C2r+1(α) (3) (3r + 2) E6r+2 r

1∗ Cr(α) (1) (r) E∗

r,0 r

2 Cr(α) (2, 1) (2r + 1,∞) E6r+1 r
Cl,q(α) (2, 1) (2l,∞) El,2q+1 l

2∗ Cl,q(α) (1, 1) (l,∞) E∗

l,2q l

3 Cl,q(α) (1, 1, 1) (l, l + q,∞) El,2q l

Remark. The tame cubic plane curve singularities T3,q (q ≥ 6) [4, 5]
coincide with those of types E2,q−6.

3. Ideals

As we have mentioned above, every ideal of a cubic ring C is isomor-
phic either to an over-ring B ⊇ C or to its dual B∗ = HomD(B,D). If
C is Gorenstein (for instance, if it is a plane cubic singularity), then
C∗ ≃ C, thus B∗ ≃ HomC(B,C). Therefore, to calculate B∗, one has
to choose a Gorenstein subring C ⊆ B and to calculate

HomC(B,C) ≃ {λ ∈ L |λB ⊆ C} = {λ ∈ C |λB ⊆ C}

(the latter equality holds since 1 ∈ B). This remark easily leads to the
following result.

Theorem 3.1. The duals to the cubic rings are as follows:

One branch ramified case: If B = D + tkCr(α), then B∗ ≃
D+ t[r/2]αD+ tk+rA.

One branch non-ramified case: If B = D + tkCr(α), then

B∗ ≃ D+ trαD+ tk+2rA.

Two branches ramified case: (1) If B = D+ tkCl,q(α), then
B∗ ≃ D+ tl(e+ tqα)D+ tk+2l+qA.

(2) If B = D+ tkCr(α), then B∗ ≃ D+ trαD+ tk+2r+1A.



CUBIC RINGS AND THEIR IDEALS 7

Two branches non-ramified case: If B = D+ tkCl,q(α), then
B∗ ≃ D+ tl(e+ tqα)D+ tk+2l+qA.

Three branches case: If B = D + tkCl,q(α), then B∗ ≃ D +
tlαD+ tk+2l+qA.

Proof. The proof is immediate if we choose for a Gorenstein subring
C ⊆ B the plane curve singularityC = Ck+r(α) orCk+l,q(α) depending
on the shape of B. For instance, in two branches ramified case, if
B = D+ tkCl,q(α) and C = D+Cl+k,q(α), then

B∗ ≃ {λ ∈ C |λB ⊆ C} = tkD+ tk+l(e+ tqα)D+ t2k+2l+qA

≃ D+ tl(e+ tqα)D+ tk+2l+qA. �

Corollary 3.2. If a cubic ring is Gorenstein, it is a plane curve sin-

gularity.

Note that it is no more the case for the extensions of bigger degrees.
For instance, the rings Ppq from [5], which are quartic, are Gorenstein
(they are complete intersections) but of embedding dimension 3.

4. Geometric case. Number of parameters

In this section we suppose that our rings are of geometric nature,
i.e. D = k[[t]], where k is algebraically closed. Then one can consider
the number of parameters par(C) defining C-ideals (see [4, Section
2.2] or [6, Section 3], where it is denoted by par(1;C,A)). Actually, it
coincides with the minimal possible number p for which there is a finite
set of families of ideals Ik (1 ≤ k ≤ m) of dimensions at most p such
that every C-ideal is isomorphic to one belonging to some family Ik.
Equivalently, it is the maximal possible p such that is a p-dimensional
family of ideals I where every isomorphism class of ideals only occurs
finitely many times. In [7] a criterion was established in order that
par(C) ≤ 1. For cubic rings it means that C dominates a singularity
of type Em (18 ≤ m ≤ 20) or E3,i. The following results give the exact
value of par(C) for all cubic rings of geometric nature. (Note that no
unramified case can occur for such rings.)

Theorem 4.1. If C is a cubic ring of geometric nature, par(C) ≤ n
if and only if C dominates one of the singularities of type E12n+i (6 ≤
i ≤ 8) or E2n+1,q (q ≥ 0).

Proof. Certainly, we have to prove that

(1) every ring of one of the listed types have at most n-parameter
families of ideals;

(2) if C dominates no ring of the listed types, it has (n + 1)-
parameter families of ideals.

Since the calculations in all cases are similar, we only consider the
one branch ramified case. Note first that the rings C2r(α) as well as
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C2r+1(α) form a r-parametric family. Indeed, we can choose in the
first case α = τ + aτ 2, and in the second one α = τ 2 + aτ 4, where
a ∈ D is defined modulo tr, and such a presentation is unique. The
same is true also for tkC2r(α)+D and tkC2r+1(α)+D for any k. Since
C2r(α) ⊇ A2r for all α, we get par(A2r) ≥ r.
Let C dominate neither a ring of type E12n+6, i.e. C4n+2(α), nor

a ring of type E12n+8, i.e. C4n+3(α). Then it contains no element of
valuation smaller than 6n+ 6, so C ⊆ A2n+2. Hence, par(C) ≥ n+ 1.
On the other hand, consider the ring C2r+q(α), where q ∈ {0, 1}.

Its over-rings are of the kind D + tkC2m+q(β), where k + m ≤ r and
k + 2m ≤ 2r. Moreover, let α = τ q+1 + aτ 2q+2 and β = τ q+1 + bτ 2q+2.
Then b is defined modulo tm and b ≡ a(mod tr−m−k). Therefore, the
over-rings with the fixed m, k form a p-parameter family, where p =
min(m, r−m− k). Hence, 2p ≤ r and p ≤ [r/2]. If we set r = 2n+ 1,
we get that par(C4n+2(α)) ≤ n and par(C4n+3(α)) ≤ n for all possible
α. It accomplishes the proof. �

Obvious considerations give the number of parameters for special
rings.

Corollary 4.2.

par(Cr(α)) = [r/2],

par(Cl,q(α)) = [l/2],

par(Am) = [m/2].
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