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Introduction

In the paper [7] Nazarova described 2-adic representations of the alternating group 
A4 of order 4. Unfortunately, it is very difficult to use this description for other pur
poses, such as calculation of cohomologies. In this paper we propose another approach, 
analogous to the study of representations and cohomologies of the Klein 4-group in 
[5]. Namely, we use the technique of Bäckström orders from [8,9] and thus relate the 
description of 2-adic representations of A4 with representations of a valued graph [1]. 
It allows to completely describe the Auslander-Reiten quiver of 2-adic representations. 
As the Auslander-Reiten transform in this case coincides with syzygy, it gives almost 
immediately the values of all Tate cohomologies of 2-adic A4-lattices. Since 3-adic repre
sentations of A4 are very simple, we also describe all integral representations and their 
cohomologies. Note that knowing cohomologies is important for applications, such as 
classification of crystallographic and Chernikov groups etc.

1. Representations. Local structure

Let G = A4 be the alternating group of degree 4, N be its Klein subgroup N �
{1, a, b, c | a2 = b2 = 1, ab = ba = c}, H = G/K � 〈σ | σ3 = 1〉. We denote by A = ZG

the group ring of G and set Ap = A⊗Zp, the p-adic completion of A, and QA = A⊗Q, 
the rational envelope of A. By A-lat (respectively Ap-lat) we denote the category of 
A-lattices, i.e. A-modules M such that, as a group, M is a free abelian group of finite 
rank (respectively, free Zp-module of finite rank). For an A-lattice M we also denote 
QM = M ⊗Q and Mp = M ⊗ Zp. Note that QMp � M ⊗Qp.

The ring A can be considered as the crossed product K ∗H, where K = ZN and H
naturally acts on K by conjugation. Here QK � Q4 with the basis {e1, ea, eb, ec}, where

e1 = 1 + a + b + c

4 
,

ea = 1 + a− b− c

4 
,

eb = 1 − a + b− c

4 
,

ec = 1 − a− b + c

4 
.

Under this identification, Kp = Z4
p if p �= 2 and K2 embeds into Z4

2 so that a, b, c identify, 
respectively, with the elements (1, 1,−1,−1), (1,−1, 1,−1) and (1,−1,−1, 1). The action 
of H is trivial on the first component of QK and cyclically permutes the other three. 
Hence

QA � QK ∗H � QH × Mat(3,Q) � Q×Q[θ] × Mat(3,Q),
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where θ is a primitive cubic root of 1. If p / ∈ {2, 3}, then

Ap � Zp × Zp[θ] × Mat(3,Zp) (a maximal order in QAp),

and

A3 � Z3H × Mat(3,Z3).

Therefore, all indecomposable Ap-lattices for p / ∈ {2, 3} are irreducible lattices Zp, Zp[θ]
and Ip = Z3

p, and for A3 there is one more indecomposable lattice Z3H.
The case p = 2 is quite different, since Z2K is no longer a maximal order. Recall that 

every group ring R = ZG is Gorenstein, i.e. inj.dimR R = 1. Therefore, all non-projective 
Rp-lattices are actually lattices over the overing R+ = EndR(radRp) [3]. As #(H) is 
invertible in Z2, for the crossed product A2 = K2∗H we have that radA2 = (radZ2K)∗H
and A+ = K+ ∗ H. Note that K+ is a Bäckström order in the sense of [8]. It means 
that there is a hereditary order K̃ such that K̃ ⊃ K+ ⊃ rad K̃ = radK+. In our case 
K̃ = Z4

2 and K+ = {(x1, x2, x4, x4) | x1 ≡ x2 ≡ x3 ≡ x4 (mod 2)}. As Ã = K̃ ∗H is also 
hereditary, A+ is also a Bäckström order. Namely,

Ã � Z2 ⊕ Z2[θ] × Mat(3,Z2).

One can easily see that A+ embeds into Ã as the subring of triples (x1, x2, x3), where 
x1 ∈ Z, x2 ∈ Z[θ] and x3 = (ξij) ∈ Mat(3,Z2), such that x1 ≡ ξ11 (mod 2), ξ12 ≡ ξ13 ≡
ξ21 ≡ ξ31 ≡ 0 (mod 2) and ρ(x2) ≡

(
ξ22 ξ23
ξ32 ξ33

)
(mod 2), where ρ denotes the regular 

representation of Z2[θ]: ρ(u + vθ) =
(

u −v
v u−v

)
. We denote by L1, L2, L3 the irreducible 

Ã-lattices belonging, respectively, to the components Z2, Z2[θ] and Mat(3,Z2), and by 
P1 and P2 the indecomposable projective A+-lattices Pi = A+ei, where e1 = 1+σ+σ2

3 
and e2 = 1− e1. Note that the only indecomposable A2-lattices that are not A+-lattices 
are Bi = A2ei. They are bijective, i.e. both projective and injective in the exact category 
A2-lat.

Recall [8], that representations of a Bäckström order are classified by representations 
of a weighted graph Γ in the sense of [1]. Namely, the vertices of Γ are in one-to-one 
correspondence with the simple components of semisimple algebras Ā = A+/ radA+

and Ā′ = Ã/ rad Ã. In our case

Ā = (K+/ radK+) ∗H � F2H � F2 × F4

and

Ā′ � (K̃/ rad K̃) ∗H � F2 ∗H × Mat(3,F2) � F2 × F4 × Mat(3,F2).

Hence, the corresponding graph Γ (with orientation) is of type F̃41:
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Γ : 

1
1′

α

γ1

3
2′

γ2

1,2

β 2

Here 1, 2, 3 correspond, respectively, to the components F2,F4 and Mat(3,F2) of Ā′, while 
1′ and 2′ correspond, respectively, to the components F2 and F4 of Ā. The weights of all 
arrows except γ2 are (1, 1), so we do note write them. In representations of Γ the arrows 
α, γ1 correspond to matrices with entries from F2, the arrows γ2, β correspond to matrices 
with entries from F4. The vector dimension of a representation M of Γ we denote by 

d1′
d2′

d1
d3
d2

. Recall that the A+-lattice M corresponding to a representation V of this graph 

is the preimage in M̃ = Ld1
1 ⊕ Ld3

3 ⊕ Ld2
2 of Imϕ(V ), where ϕ(V ) : V (1′) ⊕ V (2′) →

V (1) ⊕ V (3) ⊕ V (2) is given by the matrix

(
V (α) 0
V (γ1) V (γ2)

0 V (β)

)
,

and we identify V (1) ⊕ V (2) ⊕ V (3) with M̃/2M̃ . The Auslander-Reiten quiver of the 
category of representations of graph Γ consists of preprojective, preinjective and regular 
components. When we pass to representations of the Bäckström order, we have to glue 
the preprojective and preinjective components into one component (we call it principal) 
[9]. Namely, we omit simple injective and simple projective modules and then add ar
rows from the remaining injective to the remaining projective modules. As a result, the 
principal component for the order A+ becomes:

L2
1 L1

1 L1 L−1
1 L−2

1

. . . P 2
1 P 1

1 P1 P−1
1 . . .

L2
3 L1

3 L3 L−1
3 L−2

3

. . . P 2
2 P 1

2 P2 P−1
2 . . .

L2
2 L1

2 L2 L−1
2 L−2

2

Here by Mk we denote the k-th Auslander-Reiten transform τkM of the lattice M over 
the ring A2. As shown in [3], Mk � ΩkM , the k-th syzyzy of M as of A2-module, and P 1

i

are just the injective A+-lattices, i.e. those dual to projective ones, or, the same, injective 
in the exact category A+-lat. Actually, Pi is the unique minimal overmodule and P 1

i is 
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the unique maximal submodule of Bi = A2ei. Recall that Bi are the only indecomposable 
A2-lattices which are not A+-lattices. They are bijective, i.e. both projective and injective 
in A2-lat. Note also that the other irreducible A+-lattices are L±1

1 (just as L3 they belong 
to the component Mat(3,Z)).

The dimensions of the corresponding representations of Γ are given in the next dia
gram.

1
1

0
1
1

0
1

0
1
0

1
0

1
0
0

1
0

0
1
0

0
1

0
1
1

. . . 1
2

0
2
1

1
1

1
1
0

1
0

1
1
0

1
1

0
2
1

. . .

3
3

1
4
1

2
2

1
2
1

1
1

0
1
0

1
1

1
2
1

2
2

1
4
1

. . . 4
3

2
4
1

2
2

0
2
1

0
1

0
2
1

2
2

2
4
1

. . .

2
2

2
2
1

2
1

0
2
0

0
1

0
0
1

0
1

0
2
0

2
1

2
2
1

Note that the symmetry with respect to the central (dotted) column corresponds to the 
natural duality M 
→ M∗ = HomZ2(M,Z2) in the category of A2-lattices arising from 
the anti-isomorphism g 
→ g−1 in the group ring.

The regular components for A+-lattices are the same as those for the graph Γ. They 
consist of homogeneous tubes T f corresponding to monic irreducible polynomials from 
F2[t], except t − 1 and t2 + t + 1, and two special tubes T 1 and T θ. The homogeneous 
tubes are of the form

T f
1 T f

2 T f
3 . . . .

In these components the Auslander-Reiten transform (or, the same, the syzygy) acts 

trivially. The dimension of the representation of Γ corresponding to T f
k is 2kd

2kd

kd
3kd
kd

, 

where d = deg f .
The special tubes are of the forms:

T 1
11 T 1

12 T 1
13 . . .

T 1
21 T 1

22 T 1
23 . . .
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and

T θ
11 T θ

12 T θ
13 . . .

T θ
21 T θ

22 T θ
13 . . .

T θ
21 T θ

22 T θ
13 . . .

The dimensions of the corresponding representations of Γ are: 

2k
2k

k
3k
k

for T 1
i,2k (k > 0)

1
1

1
1
1

+ 2k
2k

k
3k
k

for T 1
1,2k+1

1
1

0
2
1

+ 2k
2k

k
3k
k

for T 1
2,2k+1

4k
4k

2k
6k
2k

for T θ
i,3k (k > 0)

0
2

0
2
1

+ 4k
4k

2k
6k
2k

for T θ
1,3k+1

2
1

2
2
0

+ 4k
4k

2k
6k
2k

for T θ
2,3k+1

2
1

0
2
1

+ 4k
4k

2k
6k
2k

for T θ
3,3k+1

2
3

2
4
1

+ 4k
4k

2k
6k
2k

for T θ
1,3k+2

4
2

2
4
1

+ 4k
4k

2k
6k
2k

for T θ
2,3k+2

2
3

0
4
2

+ 4k
4k

2k
6k
2k

for T θ
3,3k+2.

The Auslander-Reiten transform (or, the same, syzyzy) acts as follows:

T 1
1k T 1

2k

T θ
1k T θ

2k T θ
3k
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2. Globalization

To describe indecomposable A-lattices, we use the following results of [6].

Proposition 2.1. Let M(p) be Ap-lattices given for all prime p.

(1) There is an A-lattice M such that Mp � M(p) for all p if and only if there is a 
QA-module V such that QM(p) � Qp ⊗Q V for all p. Then we say that all M(p)
are of the same rational type.

(2) Such lattice M is decomposable if and only if there are direct summands N(p) of 
every M(p) such that all N(p) are of the same rational type. In particular, if M ′ is 
another lattice with the same localizations, M and M ′ decomposes simultaneously.

They say that two A-lattices M and M ′ are of the same genus if Mp � M ′
p for all p. 

As A ⊂ 6Ã, the following result follows from [2, Thm. 3.7].

Proposition 2.2. If two A-lattices belong to the same genus, they are isomorphic.

Note that if p / ∈ {2, 3}, for every QA-module V there is a unique Ap-lattice L such 
that QL � Qp ⊗Q V . Therefore, an A-lattice is completely defined by its 2-adic and 
3-adic localizations. If p ∈ {2, 3}, every QAp-module is of the form Qp⊗Q V , where V is 
a QA-module. V decomposes as V � Qr1 ⊕Q[θ]r2 ⊕W r3 , where W is the unique simple 
Mat(3,Q)-module. We write rtMp = (r1, r2, r3) and call rtMp the rational type of Mp. 
Hence an A-lattice is defined by a pair M2, M3 of lattices over A2 and A3 which are of 
the same rational type.

Note that the unique indecomposable A3-lattice which is not irreducible is the lattice 
Λ = Z3H. The rational type of Λ is (1, 1, 0). From now on, let M be an A-lattice 
of rational type (d1, d2, d3) and M3 = Zk1

3 ⊕ Z3[θ]k2 ⊕ Lk3
3 ⊕ Λk, where L3 is the 

irreducible Mat(3,Z3)-lattice. Note that the dimension of the corresponding represen

tation of the valued graph Γ is d1′
d2′

d1
d3
d2

for some d1′ , d2′ . Proposition 2.1 means that 

k1 + k = d1, k2 + k = d2 and k3 = d3. It implies a description of A-lattices M such that 
M2 is indecomposable.

Theorem 2.3. Let N be an indecomposable A2-lattice, rtN = (c1, c2, c3) and c̃ =
min(c1, c2). Denote by Nk (0 ≤ k ≤ c̃) the A-lattice such that Nk

2 � N and Nk
3 �

Λk ⊕ Zc1−k
3 ⊕ Z3[θ]c2−k ⊕ Lc3

3 . Every A-lattice M such that M2 � N is isomorphic to 
one of Nk.

Let now M2 �
⊕s

i=1 N
i, where s > 1, rtN i = (c1i, c2i, c3i) and c̃i = min(c1i, c2i). 

The following result is obvious.
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Proposition 2.4. If k ≤
∑s

i=1 c̃i, then M decomposes as 
⊕s

i=1 M
i, where M i

2 � N i and 
M i

3 � Λk ⊕Zc1i−bi
3 ⊕Z3[θ]c2i−bi ⊕ Lc3i

3 , where bi are arbitrary integers such that bi ≤ c̃i
and 

∑s
i=1 bi = k.

Thus from now on we suppose that k >
∑s

i=1 c̃i.

Proposition 2.5. If N is a direct summand of M2 of rational type (c, c, c3), then M has 
a direct summand M ′ such that M ′

2 � N .

Therefore, if M is indecomposable, M2 has no proper direct summands of rational 
type (c, c, c3). In what follows we always suppose that this condition is satisfied.

Proposition 2.6. If c1i < c2i for all i or c1i > c2i for all i, then M decomposes.

Proof. Let c1i < c2i for all i and c11 is the minimal among c1i. Then M has a direct 
summand M ′ such that M ′

2 � N1 and M ′
3 � Λc11 ⊕ Z3[θ]c21−c11 ⊕ Lc13

3 . �
Propositions 2.4-2.6 imply a description of indecomposable A-lattices M such that 

M2 has two indecomposable components.

Proposition 2.7. If M is indecomposable and s = 2, then, up to permutation of N1 and 
N2, c11 < c21 and c12 > c22. There are c+ − c̃ such lattices, where c̃ = c̃1 + c̃2 and 
c+ = min(c11 + c12, c21 + c22) corresponding to decompositions M3 � Λk ⊕Zc11+c12−k

3 ⊕
Z3[θ]c21+c22−k ⊕ Lc31+c32

3 , where c̃ < k ≤ c+.

The description of 2-adic lattices shows that |c1i − c2i| ≤ 2. If all |c1i − c2i| = 1, 
Proposition 2.5 implies that M contains a direct summand M ′ such that M ′2 � N i⊕N j

for some i �= j. The same holds if c1i − c2i = c2j − c1j = 2. Hence we can suppose now 
that there is one i such that c1i − c2i = 2 and c2j − c1j = 1 for all j �= i (or vice versa). 
Then Proposition 2.5 implies that if M is indecomposable, there are at most two such 
indices j. One immediately sees that the unique possibility with two such indices is when 
M3 � Λk ⊕ Lc3

3 , where k = c̃1 + c̃2 + 2.
Thus, we have described all indecomposable A-lattices M with decomposable M2.

Theorem 2.8. Denote by

• N1 be the set of indecomposable A2-lattices such that c1 − c2 = 1,
• N2 be the set of indecomposable A2-lattices such that c1 − c2 = 2,
• N1 be the set of indecomposable A2-lattices such that c2 − c1 = 1,
• N2 be the set of indecomposable A2-lattices such that c2 − c1 = 2.

Then the only possibilities for indecomposable A-lattices M such that M2 is decomposable 
are the following:



Y. Drozd, A. Plakosh / Journal of Algebra 674 (2025) 143--154 151

(1) M2 � N1 ⊕ N2, where N1 ∈ N1 ∪ N2, N2 ∈ N1 ∪ N2, M3 � Λc̃1+c̃2+1 ⊕ Lc3
3 . We 

denote such M by N1��N2.
(2) M2 � N1 ⊕N2, where N1 ∈ N2, N@2 ∈ N2, M3 � Λc̃1+c̃2+2 ⊕Lc3

3 . We denote such 
M by N1��2N2.

(3) M2 � N1 ⊕ N2 ⊕ N3, where N1 ∈ N2, N2, N3 ∈ N1 or N1 ∈ N2, N2, N3 ∈ N1, 
M3 � Λc̃1+c̃2+c̃3+2 ⊕ Lc3

3 . We denote such M by N1��(N2 ⊕N3).

All lattices described in (1-3) are indecomposable and pairwise nonisomorphic.

Theorems 2.3 and 2.8 give a complete description of indecomposable A-lattices.
Note that the decomposition of an A-lattice M into a direct sum of indecomposables 

is far from being unique.

Example 2.9. 

(1) If N,N ′ ∈ N1 ∪N2 and L,L′ ∈ N1 ∪N2, then N��L⊕N ′��L′ � N��L′ ⊕N ′��L.
(2) Let M ∈ N2, N,L ∈ N1, M ′ ∈ N2 and N ′, L′ ∈ N1. Then M��(N ⊕L)⊕M ′��(N ′⊕

L′) � M��2M ′ ⊕ N��N ′ ⊕ L��L′. Hence even the number of indecomposable sum
mands can differ in different decompositions.

3. Cohomology

We are going to calculate Tate cohomologies of G-lattices. As #(G) = 12, for ev
ery G-module M the groups Ĥn(G,M) split into their 2-components Ĥn(G,M)2 and 
3-components Ĥn(G,M)3. Moreover, if M is a lattice, Ĥn(G,M)p � Ĥn(G,Mp). So we 
can consider 2-adic and 3-adic cases separately.

For the group G = A4 the spectral sequence Epq
2 = Hp(H,Hq(N,M)) ⇒ Hn(G,M)

degenerates both in 2-adic and in 3-adic case. Namely, for 2-adic lattices Epq
2 = 0 if 

p �= 0. So we obtain isomorphisms

Hn(G,M) � Hn(N,M)H .

For 3-adic lattices Epq
2 = 0 if q �= 0, hence

Hn(G,M) � Hn(C,MN ).

In the 3-adic case we have indecomposable lattices Z,Z[ε],ZH and I3. Note that K acts 
trivially on Z3,Z3[ε] and Z3H and has no fixed points on I3. The quotient H is cyclic, 
so its cohomologies are periodic with period 2. Easy calculations give:

Ĥn(G,Z3) =
{
F3 if n is even,
0 if n is odd;
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Ĥn(G,Z3[ε]) =
{

0 if n is even,
F3 if n is odd.

The other indecomposable lattices are projective, hence have trivial Tate cohomologies.
For 2-adic lattices we use the following result analogous to [5, Lem. 2.2] and with 

analogous proof.

Lemma 3.1. Let M be an indecomposable A+-lattice corresponding to the representation 

V of the quiver Γ of dimension d1′
d2′

d1
d3
d2

. If M �� L1, then Ĥ0(G,M) � Fd1
2 .

Proof. Recall that Ĥ0(G,M) = MG/ trM , where MG is the set of invariants: MG =
{m ∈ M | gm = m for all g ∈ G}, and tr =

∑
g∈G g. If we consider M as a sublattice 

between M̃ = ÃM = Ld1
1 ⊕ Ld2

2 ⊕ Ld3
3 and rad M̃ = 2M̃ = 2Ld1

1 ⊕ 2Ld2
2 ⊕ 2Ld3

3 . Then 
M̃G = Ld1

1 and MG = M̃G ∩M ⊇ 2Ld1
1 . Let π : M̃ → M̃G be the projection. If u ∈ MG

and π(u) / ∈ 2M̃G, then M̃G = U ⊕ N , where U = Z2u. Combining the restriction of 
π onto M with the projection M̃G → U , we obtain a homomorphism η : M → U

such that ηε = 1U , where ε : U → M is the embedding. Therefore, U is a direct 
summand of M and M � U � L1, which is impossible. Hence MG = 2M̃G. On the 
other hand, π(M) = π(M̃), since the projection of A+ onto the first component of QA2
is maximal. Therefore trM = tr M̃ = tr M̃G = 12M̃G = 2MG, since tr M̃ ⊆ M̃G. Thus 
Ĥ0(G,M) = MG/2MG � Fd1

2 . �
Note that the rational types of the lattices M and M∗ are equal, hence Ĥ0(M) �

Ĥ0(M∗). As also Hn(G,M∗) � H−n(G,M) ([4, Prop. 3.2]), one immediately obtains 
by an obvious induction the following corollary.

Corollary 3.2. The groups Ĥn(M) do not change when one replaces n by −n or M by 
M∗.

Having the Auslander-Reiten quiver, we only need to know Ĥ0(G,M) for all inde
composable M , since Ĥn(G,M) � Ĥ0(G, τnM), as τM = ΩM . Actually, for every 
representation V from the preinjective component of the Auslander-Reiten quiver there 

is a number m|6 such that dim τmM = dimM + qω, where ω = 2
2

1
3
1

and q ∈ {1, 2}. 

Therefore, the value of d1 just changes by q. It gives a simple procedure for calculation 
of cohomologies of lattices from the principal component. Here is the result of these 
calculations.

Theorem 3.3. Let M be an idecomposable A+-lattice from the principal component, 
namely, M = Mr

0 , where M0 ∈ {L1, L2, L3, P1, P2}. Set k = [|n+r|/m], i = |n+r|−km. 
Then Ĥn(G,M) � Fqk+ri

2 , except the case when M0 = L1 and i = 0. The values m, q

and ri depend on M0. Namely:



Y. Drozd, A. Plakosh / Journal of Algebra 674 (2025) 143--154 153

If M0 = L1, then m = 6, q = 1 and

i 1 2 3 4 5
ri 0 0 1 1 0

If M0 = L2, then m = 6, q = 2 and

i 0 1 2 3 4 5
ri 0 0 2 0 2 2

If M0 = L3, then m = 2, q = 1 and r = i.
If M0 = P1, then m = 3, q = 1 and

i 1 2 3
r 1 0 1

If M0 = P2, then m = 3, q = 2 and

i 1 2 3
r 0 2 2

If M � Lr
1 and 6|(n + r), then Ĥn(M) � Z/4Z.

For representations from tubes the situation is even easier, since the values of d1, 
hence of Ĥ0, are given on page 148 after the description of tubes, and we know the 
action of τ . So we obtain the following result.

Theorem 3.4. 

Ĥn(G,T f
k ) � Ĥ0(G,T f

k ) � Fkd
2 , where d = deg f.

Ĥ2n+r(G,T 1
i,2k+j) � Ĥ0(G,T 1

i′,j) � Fk+c, where 

c =
{

1 if j = i′ = 1,
0 if j = 0 or i′ = 0

(i′ ≡ i + r (mod 2), and i′ ∈ {0, 1}).

Ĥ3n+r(G,T θ
i,3k+j) � Ĥ0(G,T θ

i′,j) � F2k+c
2 , where 

c =
{

2 if j = 1, i′ = 2 or j = 2, i′ �= 0,
0 otherwise

(i′ ≡ i + r (mod 3), and j′ ∈ {0, 1, 2}).
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