Yuriy Zhuchok (Luhansk Taras Shevchenko National University, Luhansk, Ukraine)

On decompositions of semigroups of matrices

For the study of properties of semigroups with zero effective is a notion of 0-decomposition. The use of different types of 0-decompositions for structure description of semigroups with zero can be seen for example in [1-4].

Let M' denote the set of all matrices of all dimensions over a ring K and let $M = M' \cup \{0\}$, where $0 \notin M'$. Define a multiplication \circ on M by the rule: $A \circ B = A \cdot B$ if $A, B \in M'$ and $A \cdot B$ is defined (\cdot is the usual multiplication of matrices) and $A \circ B = 0$, otherwise. With this multiplication, M is a semigroup with the zero 0 and it called (complete) semigroup of matrices over K. Let I be an ideal of M consisting of 0 and of zero matrices of an arbitrary type. The factor semigroup M/I is called the reduced semigroup of matrices over R.

Let N be a set of all natural numbers. For $n \in N$ let $M_{n \times *}$ denote the union of all sets $M_{n \times k}, k \in N$ which are sets of all the matrices over a ring K of the type $n \times k, k \in N$, with 0 adjoined. For all $n, k \in N, n \neq k$ we put

$$F_{n \times k} = M_{n \times k} \setminus (M_{n \times n} M_{n \times k}), \quad G_n = \{l \in N | l \neq n, F_{n \times l} \neq \emptyset\}.$$
$$H = \bigcup_{k \in G_n} F_{n \times k}, \quad V = M_{n \times *} \setminus H, \quad S_A = \{A, 0\} (A \in H).$$

A semigroup S with zero 0 is a left sum of semigroups $S_{\alpha}, \alpha \in Y$ if $S_{\alpha} \neq \{0\}$ for all $\alpha \in Y, S = \bigcup_{\alpha \in Y} S_{\alpha}$ and $S_{\alpha} \cap S_{\beta} = \{0\}$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha}$ for all $\alpha, \beta \in Y, \alpha \neq \beta$.

Theorem. $\{M_{n\times *}|n \in N\}$ is the greatest decomposition of complete semigroup of matrices M into a left sum of semigroups. If $G_n = \emptyset$, then semigroup $M_{n\times *}$ is indecomposable into a left sum of semigroups. If $G_n \neq \emptyset$, then $\{V, S_A | A \in H\}$ is the greatest decomposition of $M_{n\times *}$ into a left sum of semigroups.

Greatest decompositions of complete semigroup of matrices over a ring into a right and matrix sum of semigroups are described analogously. It specifies description of respective decompositions of M from [3]. Besides in according to problem 2 (see [3]) greatest decompositions of reduced semigroup of matrices M/I over a ring K into an orthogonal, left, right and matrix sum of semigroups are studied also.

- Lyapin E.S. Semiprime commutative associative systems // Izv. Akad. Nauk SSSR, Ser. Mat. 14 (1950), 367-380. (in Russian)
- [2] Venkatesan P.S. On decomposition of semigroup with zero // Math. Zeitsch. 1966. 92.
 P. 164-174.
- [3] Bogdanović S., Cirić M. Decompositions of semigroups with zero // Publications de l'institut mathématique, Nouvelle série. - 1995. - 57 (71). - P. 111-123.
- [4] Zhuchok Y.V. Decompositions of semigroup with zero // Visnyk Donetskogo Nats. Univ-ta. Seriya: fiz.-mat. nauki. - Donetsk, 2005. - 2. - S. 7-13. (In Ukrainian)