Yaşar Sözen (Fatih University, Department of Mathematics, Istanbul, Turkey)

A note on Reidemeister torsion and period matrix of Riemann surfaces

Reidemeister torsion is a topological invariant and was first introduced by Reidemeister [8] in 1935. He classified 3-dimensional lens spaces by using this combinatorial invariant of CW-complexes. Later, Franz [4] generalized Reidemeister torsion and classified the higher dimensional lens spaces. In 1964, de Rham [3] extended the results of Reidemeister and Franz to the spaces of constant curvature 1.

The topological invariance of the torsion for manifold was proved in 1969 by Kirby and Siebenmann [5]. For arbitrary simplicial complex it was proved by Chapman [1, 2]. Thus, the classification of lens spaces of Reidemeister and Franz was actually topological (i.e. up to homeomorphism).

In 1961, by using the torsion, Milnor disproved *Hauptvermutung*. He constructed two homeomorphic but combinatorially distinct finite simplicial complexes. Later in 1962, Milnor identified the Reidemeister torsion with Alexander polynomial [6]. Since then, as a topological invariant, torsion has a very useful application in knot theory and links.

We [10] presented an explanation of the relation mentioned in [11] between a symplectic chain complex with ω -compatible bases and Reidemeister torsion of it. We also [10] applied our theoretical result to the chain-complex

$$0 \to \mathscr{C}_2(\Sigma_g; \mathrm{Ad}_{\varrho}) \stackrel{\partial_2 \otimes id}{\to} \mathscr{C}_1(\Sigma_g; \mathrm{Ad}_{\varrho}) \stackrel{\partial_1 \otimes id}{\to} \mathscr{C}_0(\Sigma_g; \mathrm{Ad}_{\varrho}) \to 0$$

where Σ_g is a compact Riemann surface of genus g > 1, $\varrho : \pi_1(\Sigma_g) \to \mathrm{PSL}_2(\mathbb{R})$ is discrete and faithful representation of the fundamental group $\pi_1(\Sigma_g)$ of Σ_g .

In this study, we shall explain the relation between the Reidemeister torsion of Σ_g and its period matrix.

- [1] Chapman T.A. // Bull. Amer. Math. Soc. 1973. 79.
- [2] Chapman T.A. // Amer. J. Math. 1974. 96.
- [3] de Rham G. Tata Institute and Oxford Univ. Press, 1964.
- [4] Franz W. // J. Reine Angew. Math. 1935. **173**.
- [5] Kirby R.C., Siebenmann L.C. // Bull. Amer. Math. Soc. 1969. 75
- [6] Milnor J. // Ann. of Math. 1962. —.
- [7] Milnor J. // Bull. Amer. Math. Soc. 1966. 72.
- [8] Reidemeister K. // Abh. Math. Sem. Univ. Hamburg 1935. 11.
- [9] Sözen Y. // Osaka J. Math. 2008. 45.
- [10] Sözen Y. // Math. Slovaca (accepted)
- [11] Witten E. // Comm. Math. Phys. 1991. 141.