O. Shapovalova, S. Kuzhel (National Pedagogical Dragomanov University; Institute of Mathematics of NAS of Ukraine, Kiev)

On *J*-self-adjoint extensions of a symmetric operator with zero characteristic function.

Let J be an involution (i.e., $J = J^*$, $J^2 = I$) in a Hilbert space \mathfrak{H} . We study J-selfadjoint extensions of a symmetric operator A_{sym} which is defined as follows: let U be a bilateral shift with a finite-dimensional wandering subspace W_0 in \mathfrak{H} and let V be its restriction onto $\mathfrak{H} \oplus W_0$. Then

$$A_{\text{sym}} = i(V+I)(V-I)^{-1}, \qquad \mathcal{D}(A_{\text{sym}}) = \mathcal{R}(V-I).$$
(1)

In other words, A_{sym} is the restriction of the Cayley transformation of U:

$$A = i(U+I)(U-I)^{-1}, \qquad \mathcal{D}(A) = \mathcal{R}(U-I)$$

onto $\mathcal{D}(A_{\text{sym}}) = \mathcal{R}(V - I)$. The operator A_{sym} is symmetric (since A is self-adjoint) and its deficiency induces coincide with dim W_0 .

The operator A_{sym} was constructed by Phillips [1] as an example of the symmetric operator which is invariant with respect to some set \mathfrak{U} of unitary operators (\mathfrak{U} -invariant) but it has no \mathfrak{U} -invariant self-adjoint extensions. Later A.N. Kochubei showed that the characteristic function of A_{sym} is identically equal to zero [2].

Theorem 1 Let A be a J-self-adjoint extension of A_{sym} and $\dim W_0 = 2$. Then either A has a real spectrum or the spectrum $\sigma(A)$ covers the whole complex plane \mathbb{C} and its non-real part $\mathbb{C} \setminus \mathbb{R}$ consists of eigenvalues of A.

If a J-self-adjoint extension A has a real spectrum then A is similar to a self-adjoint operator.

- R. S. Phillips // Proceedings of the International Symposium on Linear Spaces Jerusalem, 1960. —366-398.
- [2] A. N. Kochubei //Funk. Anal. Prilozh. —1979. —13, 77-78.