Alexej Pynko (Institute of Cybernetics of NAS of Ukraine, Kiev, Ukraine)

Equational maps of subdirectly-closed abstract classes of algebras

Let $i = 1, 2, \mathcal{L}_i$ an infinitary algebraic signature, K_i a class of \mathcal{L}_i -algebras and \mathbf{C}_i (\mathbf{S}_i) the category constituted by members of K_i as objects and by (respectively, surjective) homomorphisms between them as morphisms.

An equational map from K_1 to K_2 [1] is any $e: K_1 \to K_2$ preserving carriers such that:

- for each $f \in \mathcal{L}_2$ of rank r such that r > 0 whenever \mathcal{L}_1 has no constant, there is an \mathcal{L}_1 -term $t(\bar{x})$, where \bar{x} is a sequence of pairwise-distinct variables of length r, such that, for every $\mathcal{A} \in \mathsf{K}_1$, $t^{\mathcal{A}} = f^{e(\mathcal{A})}$;
- in case \mathcal{L}_1 has no constant, it holds that, for each constant $c \in \mathcal{L}_2$, there is an \mathcal{L}_1 -term s(x) with a single variable x such that, for every $\mathcal{A} \in \mathsf{K}_1$ and all $a \in \mathcal{A}$, $s^{\mathcal{A}}(a) = c^{e(\mathcal{A})}$.

Next, K_1 and K_2 are said to be *rationally equivalent* [2] provided there are mutuallyinverse equational maps from K_1 to K_2 and from K_2 to K_1 .

Theorem 1 Suppose K_1 is an abstract class closed under formation of subdirect products of non-empty systems. Then, equational maps from K_1 to K_2 are exactly object components of those functors from C_1 (S_1) to C_2 (respectively, S_2) which commute with forgetful set functor.

Corollary 1 Assume both K_1 and K_2 are abstract classes closed under formation of subdirect products of non-empty systems. Then, K_1 and K_2 are rationally equivalent iff there is an isofunctor between C_1 (S_1) and C_2 (respectively, S_2) commuting with forgetful set functor.

The particular cases of Theorem 1 and Corollary 1 not involving the categories S_1 and S_2 are proved in [1] and [2], respectively, for hereditary multiplicative abstract classes.

Neither Theorem 1 nor Corollary 1 can be extended to multiplicative abstract classes. For instance, when K_1 is the class of all bounded distributive lattices having complement and K_2 is the variety of all Boolean algebras, the equational map from K_2 to K_1 that assigns complement-less reducts to Boolean algebras is the object component of an isofunctor between C_2 and C_1 commuting with forgetful set functor whereas there is no equational map from K_1 to K_2 because the only unary polynomial operations of any bounded distributive lattice are the diagonal and the constants zero and unit while the complement operation of any non-trivial Boolean algebra is neither diagonal nor constant.

- Felscher W. Equational maps // Contributions to Mathematical Logic. Amsterdam: North-Holland Publishing Company, 1968. — P. 121–161.
- [2] Мальцев А.И. Структурная характеристика некоторых классов алгебр // Доклады академии наук СССР. 1958. Т. 120. N. 1. С. 29–32.