Anatoly Serdyuk, Eugen Ovsiy (Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine)

Approximation of Continuous Periodic Functions by Linear Methods

Let C be the space of 2π -periodic continuous functions f with the norm $||f||_C = \max_t |f(t)|$. Let $C^{\psi}_{\beta} H_{\omega}$ be the set of functions $f \in C$ representable in the form of a convolution

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(x-t) \Psi_{\beta}(t) dt, \quad \varphi \in H^0_{\omega},$$

where $H^0_{\omega} = \{\varphi \in C : |\varphi(t') - \varphi(t'')| \leq \omega(|t' - t''|) \forall t', t'' \in R, \varphi \perp 1\}, \omega(t)$ is an arbitrary modulus of continuity, $\Psi_{\beta}(t)$ is a summable function, which the Fourier series is of the form $\sum_{k=1}^{\infty} \psi(k) \cos(kt - \beta \pi/2), \beta \in R, \psi(k)$ is prescribed number of sequences. Let M'_0 be the set of continuous functions $\psi(t)$ convex below for all $t \geq 1$, having at the points t = k the values $\psi(k)$ and which satisfy conditions: $\lim_{t \to \infty} \psi(t) = 0, \ 0 < \frac{t}{\psi^{-1}(\frac{\psi(t)}{2}) - t} \leq K$,

 $t \ge 1$ and $\int_{1}^{\infty} \frac{\psi(t)}{t} dt < \infty$. Let

$$Z_n^{\psi,A}(f,x) = \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(1 - \frac{\psi(n)}{\psi(k)} \left(A + (1-A)\frac{k}{n} \right) \right) (a_k \cos kx + b_k \sin kx),$$

where $n \in N$, $\psi \in M'_0$, A > 0 and a_k , b_k is the Fourier coefficients of function f(x).

For the class $C^{\psi}_{\beta}H_{\omega}$, where $\psi \in M'_0$, it is proved the following statement.

Theorem. Let $\psi \in M'_0$, $\omega(t)$ is an arbitrary modulus of continuity, $\beta \in R$ and A > 0. Then the following relation holds as $n \to \infty$

$$\sup_{f \in C_{\beta}^{\psi} H_{\omega}} \|f(x) - Z_{n}^{\psi,A}(f,x)\|_{C} = \frac{\theta_{n}(\omega)}{\pi} \Big| \sin \frac{\beta \pi}{2} \Big| \Big(A\psi(n) \int_{1/n}^{1} \frac{\omega(2t)}{t} dt + \int_{0}^{1/n} \psi(\frac{1}{t}) \frac{\omega(t)}{t} dt \Big) + O(1)\psi(n), \tag{1}$$

where $\theta_n(\omega) \in [\frac{2}{3}, 1]$, $\theta_n(\omega) = 1$ if $\omega(t)$ is a convex modulus of continuity, and O(1) is a quantity uniformly bounded in n and β .

For the class $W_{\beta}^{r}H_{\omega}$ and Zygmund method Z_{n}^{s} the equality (1) is proved in work [1]. For a case A = 1 the equality (1) is obtained in [2].

- Efimov A.V. Linear methods of approximating certain classes of continuous periodic functions (Russian) // Tr. Mat. Inst. Akad. Nauk SSSR. — 1961. — 62. — P. 3—47.
- [2] Serdyuk A.S., Ovsiy E.Y. Approximation of classes $C^{\psi}_{\beta}H_{\omega}$ by generalized sums of Zygmund (Russian) // Ukrain. Mat. Zh. 2009. **61**, N 4. P. 524—537.