Orlik L.K. (Moscow Border Guard Institute of The Federal Security Service of Russia, Russia)

On the order of exponential growth of solutions of linear difference and partial differential equations in Banach space

Let the following difference boundary problem

$$\Delta_1^{P_1} \dots \Delta_n^{P_n} y - \sum A_{q_1 \dots q_n} \Delta_1^{q_1} \dots \Delta_n^{q_n} y = f \quad , \tag{1}$$

$$y\Big|_{0 \le t_j < P_j \delta_j} = f_j(t_1, \dots, t_n), \quad j = \overline{1, n},$$
 (2)

in the region $0 \le t_1, \ldots, t_n < \infty$. Here

$$\Delta_{j} y = \frac{1}{\delta_{j}} \Big[y(t_{1}, \dots, t_{j-1}, t_{j} + \delta_{j}, t_{j+1}, \dots, t_{n}) - y(t_{1}, \dots, t_{n}) \Big], \ \delta_{j} > 0 \ , \ j = \overline{1, n} \ ,$$

the functions $y = y(t_1,...,t_n)$, $f = f(t_1,...,t_n)$ are continuous vector functions whose values lie in some complex Banach space X; $A_{q_1...q_n} = A_{q_1...q_n}(t_1,...,t_n)$ denotes families of bounded periodic linear operators which act in X.

The first term in (1)-(2) is the highest order term: $p_i \ge q_i$; $\sum p_i \ge \sum q_j$.

Let

$$E_{\alpha} = \left\{ f(t_1, \dots, t_n) \Big|_{t_1 + \dots + t_n \to \infty} \left\| f(t_1, \dots, t_n) \right\|_x \exp(-\alpha - \varepsilon)(t_1 + \dots + t_n) = 0, \forall \varepsilon > 0 \right\}$$

We select a subspace from E_{α} denoted by B_{α} , $-\infty < \alpha < +\infty$, which consists of function satisfying the condition

$$\sup_{0\leq t_1,\ldots,t_n<\infty} \left(\left\| f(t_1,\ldots,t_n) \right\|_x \exp\left[-\alpha(t_1,\ldots,t_n)\right] \right) < \infty \, .$$

For any $f \in B_{\alpha}$ the solution y belongs to some E_{β} for β sufficiently large. Let $\chi(\alpha)$ denote the greatest lower bound of such β .

We have the following

Theorem. There exists an α_0 such that $\chi(\alpha) = \alpha_0$ for $\alpha \le \alpha_0$ and $\chi(\alpha) = \alpha$ for $\alpha > \alpha_0$. The boundary problem (1)-(2) is investigated by use of the methods developed in [1].

Consider the boundary problem

$$\begin{cases} \frac{\partial^{n} y}{\partial t_{1} \dots \partial t_{n}} - \sum A_{j} \frac{\partial^{n-1} y}{\partial t_{1} \dots \partial t_{j-1} \partial t_{j+1} \dots \partial t_{n}} - \sum A_{ij} \frac{\partial^{n-1} y}{\partial t_{1} \dots \partial t_{j-1} \partial t_{j+1} \dots \partial t_{n}} - \\ -\dots - A_{12\dots n} y = f(t_{1}, \dots, t_{n}), 0 \le t_{j} < \infty, j = 2, 3, \dots n, \\ y(0, t_{2}, \dots, t_{n}) = y(t_{1}, 0, t_{2}, \dots, t_{n}) = \dots = y(t_{1}, t_{2}, \dots, t_{n-1}, 0) = 0 \end{cases}$$
(3)

in the region $0 \le t_1, \ldots, t_n < \infty$.

Here $y(t_1, t_2, ..., t_n)$, $f(t_1, t_2, ..., t_n)$ are continuous vector functions whose values lie in some complex Banach space X; $A_j = A_j(t_1, ..., t_n)$, $A_{ij} = A_{ij}(t_1, ..., t_n)$, ..., $A_{12...n} = A_{12...n}(t_1, ..., t_n)$ are families of bounded linear compact operators which act in X.

Let

$$E_{\alpha} = \left\{ f(t_1, \dots, t_n) \Big| \underbrace{\overline{\lim}}_{t_1 + \dots + t_n \to \infty} \left\| f(t_1, \dots, t_n) \right\|_x \exp(-\alpha - \varepsilon)(t_1 + \dots + t_n) = 0, \forall \varepsilon > 0 \right\}.$$

The totality of solutions y is covered by E_{β} for β sufficiently large if f ranger over $B_{\alpha} \subset E_{\alpha}$; B_{α} is a Banach space with respect to the norm

$$||f||_{B_{\alpha}} = \sup_{0 \le t_1, \dots, t_n < \infty} (||f(t_1, \dots, t_n)||_x \exp[-\alpha(t_1, \dots, t_n)] < \infty).$$

Denote by $\inf \beta = \chi(\alpha)$ and is colled exponential characteristic of problem (3) – (4). [2] We have the following

Theorem. There exists an $(-\infty <)\alpha_0 \le \beta_0 \le \gamma_0(<+\infty)$ such that $\chi(\alpha) = \beta_0$ for $\alpha \le \alpha_0$; $\chi(\alpha) = \alpha$ for $\alpha \ge \gamma_0$; $\chi(\alpha)$ is increasing function on (α_0, γ_0) .

For problem (3) - (4) with periodic coefficients we get $\alpha_0 = \beta_0 = \gamma_0$ and $\chi(\alpha) = \max(\alpha, \alpha_0)$. Here β_0 is highest order and γ_0 is general order of associated uniform problem [3].

- Rutman M.A. Boundedness of the solutions of certain linear partial difference equations, Dokl. Akad. Nauk. SSSR 159 (1964), 273-275 = Soviet Math. Dokl. 5 (1964), 1480-1482. MR 31 #1484.
- [2] Orlik L.K. || J. Diff.Equations.-Vol.25. №10 (1989). p. 1819 1820.
- [3] Orlik L.K. Exponential characteristic of hyperbolic partial differential equation in Banach space, /Internathional Conference: Modern Analysis and Applications (MMA 2007) dedicated to the centenary of Mark Krein, Odessa, Ukraine, april 9-14, 2007, P. 106-107./