Bogdana Oliynyk (National University "Kyiv-Mohyla Academy" Kyiv, Ukraine)

On realizability of permutation groups as isometry groups

We call a permutation group (G, X) realizable as isometry group if there exists a metric d_X on the set X such that (G, X) is isomorphic to the isometry group IsX of the space (X, d_X) as a permutation group.

We say that the operation * on the class of permutation groups *preserves realizability* if for arbitrary realizable permutation groups (G, X) and (H, Y) the permutation group (G, X) * (H, Y) is realizable as well.

Theorem 1 Operations of direct sum and wreath product (see, for example, [1]) preserve realizability.

Let $\{T_1, T_2, \ldots, T_n, \ldots\}$ be some alphabet. We define special formulas in this alphabet as follows:

- T_i is a formula (i = 1, 2, ...).
- If H_1 and H_2 are formulas then $(H_1 \wr H_2)$, $(H_1 \oplus H_2)$ are formulas.
- There are no other formulas.

For a formula $W(T_1, T_2, \ldots, T_n)$ its value on a sequence $(G_1, X_1), (G_2, X_2), \ldots, (G_n, X_n)$ of permutation groups is the permutation group

$$W((G_1, X_1), (G_2, X_2), \dots, (G_n, X_n)).$$

Corollary 1 Let $W(T_1, T_2, ..., T_n)$ be a formula. For arbitrary realizable permutation groups $(G_1, X_1), (G_2, X_2), ..., (G_n, X_n)$ the permutation group

$$W((G_1, X_1), (G_2, X_2), \dots, (G_n, X_n))$$

is realizable.

Theorem 2 A regular group G of order $n \ge 3$ is realizable iff G is an elementary abelian 2-group.

 Kaloujnine L.A., Beleckij P.M., Feinberg V.T. Kranzprodukte. — Leipzig: BSB B.G. Teubner Verlagsgesellschaft, 1987.