Aleksandr A. Murach (Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine)

Interpolation with a Function Parameter and Hörmander Spaces

We consider the Hilbert Hörmander spaces

$$H^{\varphi}(\mathbf{R}^{n}) := \left\{ w \in \mathcal{S}'(\mathbf{R}^{n}) : \|w\|_{H^{\varphi}(\mathbf{R}^{n})} := \|\varphi((1+|\xi|^{2})^{1/2})(\mathcal{F}w)(\xi)\|_{L_{2}(\mathbf{R}^{n},d\xi)} < \infty \right\}$$

parametrized by the function $\varphi \in \text{RO}$. Here RO is the set of all Borel measurable functions $\varphi : [1, \infty) \to (0, \infty)$ such that $c^{-1} \leq \varphi(\lambda t)/\varphi(t) \leq c$ for every $t \geq 1$ and $\lambda \in [1, a]$, with the constants a > 1 and $c \geq 1$ depending on φ . The class RO was introduced by V. G. Avakumović. In the case where $\varphi(t) = t^s$ we have the Hilbert Sobolev space $H^{\varphi}(\mathbf{R}^n) = H^s(\mathbf{R}^n)$ of order $s \in \mathbf{R}$.

Theorem 1. The class of spaces $\{H^{\varphi}(\mathbf{R}^n) : \varphi \in \mathrm{RO}\}\$ coincides (up to equivalence of norms) with the set of all interpolation Hilbert spaces for couples of Hilbert Sobolev spaces $H^{s_0}(\mathbf{R}^n), H^{s_1}(\mathbf{R}^n), -\infty < s_0 < s_1 < \infty$. Each space $H^{\varphi}(\mathbf{R}^n)$ can be obtained by the interpolation with a function parameter [1] of a couple of Hilbert Sobolev spaces.

The property of $H^{\varphi}(\mathbf{R}^n)$ to be an interpolation space for the couple $H^{s_0}(\mathbf{R}^n)$, $H^{s_1}(\mathbf{R}^n)$ means that each linear operator bounded on the both spaces $H^{s_j}(\mathbf{R}^n)$, j = 0, 1, should be bounded on $H^{\varphi}(\mathbf{R}^n)$ as well.

Theorem 1 remains true if we replace \mathbf{R}^n with a closed (compact) C^{∞} -manifold Γ . The space $H^{\varphi}(\Gamma)$ consists of all distributions on Γ which belong in local coordinates to $H^{\varphi}(\mathbf{R}^n)$. The space $H^{\varphi}(\Gamma)$ coincides with the completion of $C^{\infty}(\Gamma)$ with respect to the norm $\|\varphi((1-\Delta)^{1/2})f\|_{L_2(\Gamma)}$, $f \in C^{\infty}(\Gamma)$. Here Δ is the Beltrami-Laplace operator.

We consider some applications of the spaces $H^{\varphi}(\Gamma)$, $\varphi \in \text{RO}$. Let A be an elliptic pseudodifferential operator on Γ of a real order $r, \varrho(t) := t$, and $\log^* t := \max\{1, \log t\}$.

Theorem 2. Operator A maps $H^{\varphi}(\Gamma)$ into $H^{\varphi\varrho^{-r}}(\Gamma)$ continuously for every $\varphi \in \operatorname{RO}$. This operator is Fredholm, its kernel and index are independent of φ .

Theorem 3. Assume A to be a normal operator in $L_2(\Gamma)$ with r > 0. Then for every function $f \in H^{\log^*}(\Gamma)$, its Fourier series in eigenfunctions of A converges almost everywhere on Γ .

Here the eigenfunctions of A are indexed in such a way that the corresponding eigenvalues increase in modulus.

The results are obtained together with V. A. Mikhailets [1-3].

- [1] Mikhailets V. A., Murach A. A. // Methods Funct. Anal. Topology. 2008. 14, N 1.
- [2] Mikhailets V. A., Murach A. A. // Transact. Institute Math. NAS of Ukraine. 2008. —
 5, N 1.
- [3] Mikhailets V. A., Murach A. A. // Dopovidi Nats. Acad. Nauk. Ukrainy. 2009. N 3.