Alexander Kosyak (Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev, Ukraine)

Representations of the infinite-dimensional groups and the Ismagilov conjecture

Sir Michael Atiyah said in his Fields Lecture [1]: " ... the 21th century might be the era of quantum mathematics or, if you like of infinite-dimensional mathematics."

We start a systematic development of a noncommutative harmonic analysis on infinitedimensional groups. These groups are supposed to be non-locally compact. Since almost all constructions in the harmonic analysis on a locally compact group G are based on the existence and uniqueness of the G-invariant measure (Haar measure) on the group G, it is very natural to try to construct something similar for non-locally compact groups. Since the initial group G is not locally compact there is neither Haar (invariant) measure (A. Weil, [3]), nor G-quasi-invariant measure (Xia Dao-Xing, [4]) on it. The most direct approach to construct an analog of the Haar measure is as follows (A.V. Kosyak, [2]).

Try to construct some bigger topological group \tilde{G} containing the initial group G as a dense subgroup (that is \tilde{G} is a completion of G) and G-right-quasi-invariant measure μ on \tilde{G} . Thus, the starting point is to construct for an infinite-dimensional group G a triplet (\tilde{G}, G, μ) with the mentioned properties. In such a way we construct regular, quasiregular and induced representations (depending on the completion \tilde{G} and the measure μ) for the infinite-dimensional groups and study their properties.

Ismagilov's conjecture and its generalizations explain in terms of the corresponding measures, when these representations are *irreducible*. We study the von Neumann algebra $\mathfrak{A}^{R,\mu}(G) = (T_t^{R,\mu} | t \in G)''$, generated by the right $T^{R,\mu}$ (or left) regular representations of the infinite-dimensional nilpotent groups $B_0^{\mathbb{N}}$ and $B_0^{\mathbb{Z}}$, where M' is commutant of the algebra M. Firstly, we give a condition on the measure μ for the right von Neumann algebra $\mathfrak{A}^{R,\mu}(G)$ to be the commutant of the left one $\mathfrak{A}^{L,\mu}(G)$. This is an analog of the well-known Dixmier commutant theorem for locally compact groups. Secondly we study when the von Neumann algebra M generated by the right (or left) regular representations is factor, i.e. when $M \cap M'$ is trivial, i.e. consists of scalar operators. Finally we show that the corresponding factors are of type III₁ under some natural conditions on the measure μ .

- M. Atiah. Mathematics in the 20th Century, Authors Fields Lecture at the Word Mathematical Year 2000 Symposium, Toronto, June 7–9, 2000.
- [2] A.V. Kosyak. Representations of the infinite-dimensional groups and the Ismagilov conjecture, 453 p. (in preparation).
- [3] A. Weil. L'intégration dans les groupes topologiques et ses applications 2^e ed. Paris: Hermann, 1953.
- [4] Xia-Dao-Xing. Measures and Integration in Infinite-Dimensional Spaces. New York/London: Academic Press, 1978.