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Some generalized asymptotic properties of long-memory
random fields with singular spectrum

Let ξ(x), x ∈ Rn be a real, measurable, mean-square continuous, homogeneous isotropic
Gaussian random field with Eξ(x) = 0, Eξ2(x) = 1 and isotropic spectral function
Φ(λ), λ ≥ 0.

Let

b̃a(r) = D
[∫

Rn
fn,r,a(|t|)ξ(t)dt

]
, b̃a(r) = D

[∫

Rn
gn,r,a(|t|)ξ(t)dt

]

where

fn,r,a(|t|) =
1

|t|n2−1

∫ ∞

0
λn/2

Jn
2
(r(λ− a))

(r(λ− a))n/2
Jn

2
−1(|t|λ)dλ, |t| 6= r ,

gn,r,a(|t|) =
1

|t|n2−1
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dλ, |t| 6= r ,

Jν(z) – Bessel function of the first kind, ν > −1
2
.

Representations of weight functions fn,r,a(|t|), gn,r,a(|t|) by series are obtained and
investigated.

Abelian and Tauberian theorems linking the local behavior of the spectral function
Φ(x) in arbitrary point x = a and the weighted integral functionals b̃a(r) and b̃a(r) of
random fields are presented. The asymptotic behavior is described in terms of functions
of the class OR. The difference of asymptotic behavior for functionals of the type

1

rβ

∫

Rn
fn,r,a(|t|)ξ(t)dt

in the case of a 6= 0 is investigated.
The results generalize some properties of long-memory random fields. In a particular

case a = 0 the classical results can be obtained easily.
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