Andrii Khrabustovskyi (B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine)

Homogenization of spectrum of Riemannian manifolds with complicated microstructure

Let M^{ε} be a compact Riemannian manifold depending on a small parameter ε in such a way that the topological genus of M^{ε} goes to infinity as $\varepsilon \to 0$. More precisely, we consider the manifolds consisting of either one or several copies of a fixed compact manifold (we call it "basic manifold") with a large number of small holes attached edge to edge by means of "handles" and "bubbles"; the number of holes depends on ε and tends to infinity as $\varepsilon \to 0$.

Our goal is to study the asymptotic behavior of the spectrum of the Laplace-Beltrami operator Δ^{ε} on M^{ε} as $\varepsilon \to 0$. It turns out that under some assumptions on the scales of the manifold M^{ε} the spectrum of Δ^{ε} tends to the spectrum of some homogenized operator on a basic manifold. Its structure can essentially differ from the prelimit operator Δ^{ε} .

In our talk we discuss various homogenized spectral problems. In particular, we are interested in the examples for which the homogenized operator has (in contrast to Δ^{ϵ}) non-empty essential spectrum. The results are published in [1, 2, 3].

- [1] Khrabustovskyi A. // Applicable Analysis 2008. 87, N 12.
- [2] Khrabustovskyi A. // J.Math.Phys.Anal.Geom. 2009. 5, N 2.
- [3] Khrabustovskyi A. // Math.Meth.Appl.Sci. 2009. DOI: 10.1002/mma.1128.