Oleg Gutik (Lviv National University, Ukraine), *Dušan Pagon* (Institute of Mathematics, Physics and Mechanics, University of Maribor, Slovenia) and *Dušan Repovš* (Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Slovenia)

On sequential countably compact topological semigroups

In our report all topological spaces will be assumed to be Hausdorff. We shall follow the terminology of [1, 2, 3]. A topological space S that is algebraically semigroup with a continuous semigroup operation is called a *topological semigroup*. A topological space Xis called *countably compact* if any countable open cover of X contains a finite subcover [3]. A topological space X is called *sequential* if each non-closed subset A of X contains a sequence of points $\{x_n\}_{n \in N}$ that converges to some point of $x \in X \setminus A$ [3].

Theorem 1 The bicyclic semigroup does not embed into a sequential countably compact topological semigroup.

Theorem 2 Let S be a countably compact topological semigroup which contains the bicyclic semigroup C(p,q) as a dense subsemigroup. Let $e \in cl_S(E(\mathcal{C}) \setminus E(\mathcal{C}))$. Then

- (i) the map $h: \mathcal{C}(p,q) \to S$ defined by the formula $h(x) = e \cdot x$ is a continuous homomorphism;
- (ii) e is the identity in $S \setminus C(p,q)$;
- (iii) the map $h: S \to S$ defined by the formula $h(x) = e \cdot x$ is a continuous homomorphism;
- (iv) $h(\mathcal{C}(p,q))$ is a dense subgroup of $S \setminus \mathcal{C}(p,q)$, moreover $h(\mathcal{C}(p,q))$ is algebraically isomorphic to the additive group of integers;
- (v) $S \setminus C(p,q)$ is a commutative subsemigroup in S.

Theorem 3 The closure of a subgroup in a countably compact sequential topological semigroup is a subgroup.

Theorem 4 The inversion on a Clifford countably compact topological semigroup is sequentially continuous.

Theorem 5 A T_3 -sequential countably compact topological semigroup S is completely simple if and only if S is topologically isomorphic to a topological paragroup $[X, G, Y]_{\sigma}$ for some T_3 -sequential countably compact topological spaces X and Y and sequential countably compact topological group G.

- J. H. Carruth, J. A. Hildebrant and R. J. Koch, *The Theory of Topological Semigroups*, Vol. I and II, Marcel Dekker, Inc., New York and Basel, 1983 and 1986.
- [2] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vol. I and II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.
- [3] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.