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On sequential countably compact topological semigroups

In our report all topological spaces will be assumed to be Hausdorff. We shall follow
the terminology of [1, 2, 3]. A topological space S that is algebraically semigroup with a
continuous semigroup operation is called a topological semigroup. A topological space X
is called countably compact if any countable open cover of X contains a finite subcover [3].
A topological space X is called sequential if each non-closed subset A of X contains a
sequence of points {xn}n∈N that converges to some point of x ∈ X \ A [3].

Theorem 1 The bicyclic semigroup does not embed into a sequential countably compact
topological semigroup.

Theorem 2 Let S be a countably compact topological semigroup which contains the bi-
cyclic semigroup C(p, q) as a dense subsemigroup. Let e ∈ clS(E(C) \ E(C). Then

(i) the map h: C(p, q) → S defined by the formula h(x) = e · x is a continuous homo-
morphism;

(ii) e is the identity in S \ C(p, q);

(iii) the map h: S → S defined by the formula h(x) = e·x is a continuous homomorphism;

(iv) h(C(p, q)) is a dense subgroup of S \ C(p, q), moreover h(C(p, q)) is algebraically
isomorphic to the additive group of integers;

(v) S \ C(p, q) is a commutative subsemigroup in S.

Theorem 3 The closure of a subgroup in a countably compact sequential topological semi-
group is a subgroup.

Theorem 4 The inversion on a Clifford countably compact topological semigroup is se-
quentially continuous.

Theorem 5 A T3-sequential countably compact topological semigroup S is completely
simple if and only if S is topologically isomorphic to a topological paragroup [X,G, Y ]σ for
some T3-sequential countably compact topological spaces X and Y and sequential countably
compact topological group G.
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