Vadym Doroshenko (Kyiv Taras Shevchenko University, Department of Mechanics and Mathematics, Kyiv, Ukraine)

Free commutative subsemigroups in topological commutative semigroups

A subset of a topological space is said to be nowhere dense if the interior of its closure is empty. A subset is called meagre if it is a countable union of nowhere dense subsets. The complement of a meagre set is called co-meagre. The well-known Baire Category theorem (see for example [1]) says that a complete metric space is not a meagre set.

Let S be a topological semigroup. We will consider all products of topological semigroups as topological spaces with respect to product (Tykhonov) topology.

The commutative semigroup S is said to be almost commutative free if for each $n\geq 2$ the set

 $\{(s_1,\ldots,s_n)\in S^n|\{s_1,\ldots,s_n\}$ freely generates a free commutative subsemigroup of $S\}$

is not meagre and is co-meagre in S^n .

Theorem 1. Let S be a complete metrizable topological commutative semigroup. If S contains a dense free commutative subsemigroup then S is almost commutatively free.

Corollary 1. The semigroup $(\mathbb{R}, +)$ contains a dense free commutative subsemigroup and hence is almost commutatively free.

[1] J. L. Kelley. General topology — Birkhauser, 1975, 298p.