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On the weakly nonlinear and symmetric periodic systems at
resonance

We investigate in [1] the existence of periodic and symmetric solutions of weakly non-
linear ordinary differential equations at resonance and establish conditions, under which
those solutions are either stable or hyperbolic. We present examples to illustrate our the-
ory and also to show advantages of our method to the classical averaging theory [2, 3, 4, 5].

We consider non-autonomous resonance systems of the form

ẋ = εf(x, t), x ∈ Rn, t ∈ R (1)

with a small parameter ε ∈ R, and a function f ∈ C0(Rn ×R,Rn) is symmetric in x and
pT -periodic in t, i.e. it holds Af(x, t) = f(Ax, t+T ) , where A : Rn → Rn is a linear map
such that Ap = I for some p ∈ N , 1 ∈ σ(A), where σ(A) is the spectrum of A. The case
1 /∈ σ(A) is studied in [6, 7] where unique symmetric and periodic solutions are shown.

The results presented here are generalizations of achievements for anti-periodic prob-
lems with A = −I [8, 9], and continuations of [6, 7, 10]. Doubly symmetric solutions of
reversible systems are studied in [11]. Symmetric properties of periodic solutions of non-
linear nonautonomous ordinary differential equations are studied also in [12]. Symmetric
Hamiltonian systems at resonances are studied in [13].
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[6] Dilna N., Fečkan M. On the uniqueness, stability and hyperbolicity of symmetric and peri-
odic solutions of weakly nonlinear ordinary differential equations. //Miskolc Mathematical
Notes, 2009. — 10, No. 1, pp. 11-40.
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[8] Aizovici S., Fečkan M. Forced symmetric oscillations of evolution equations// Nonlinear
Analysis., 2006. — 64, pp. 1621–1640.

[9] Aizovici S., Pavel N.H. Anti-periodic solutions to a class of nonlinear differential equations
in Hilbert space // J. Funct. Anal., 1991. — 99, pp. 387–408.
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