Vladimir Chilin, Botir Zakirov (National University of Uzbekistan, Tashkent Railway Engineering Institute, Tashkent, Uzbekistan)

The Radon-Nikodym-type theorem for Maharam traces

Let M be an von Neumann algebra, let S(M) be the *-algebra of all measurable operators affiliated with to M and let $t_l(M)$ be the topology of convergence locally in measure in S(M) ([1], III, §3.5). Let \mathcal{A} be an arbitrary commutative von Neumann algebra and let Φ be the faithful normal $S(\mathcal{A})$ -valued trace on M. An operator $x \in S(M)$ is said to be Φ -integrable if there exists a sequence $\{x_n\} \subset M$ such that $x_n \xrightarrow{t_l(M)} x$ and $\Phi(|x_n - x_m|) \xrightarrow{t_l(\mathcal{A})} 0$ as $n, m \to \infty$. In this case, there exists $\widehat{\Phi}(x) \in S(\mathcal{A})$ such that $\Phi(x_n) \xrightarrow{t_l(\mathcal{A})} \widehat{\Phi}(x)$. Let $L^1(M, \Phi)$ be the set of all Φ -integrable operators and denote $||x||_{\Phi} = \widehat{\Phi}(|x|)$ for every $x \in L^1(M, \Phi)$. Then $(L^1(M, \Phi), || \cdot ||_{\Phi})$ is a (bo)-complete lattice normed space.

The trace Φ possesses the Maharam property if for any $x \in M_+$, $0 \leq f \leq \Phi(x) \in S(\mathcal{A})$ there exists a positive $y \leq x$ such that $\Phi(y) = f$. A faithful normal $S(\mathcal{A})$ -valued trace Φ with the Maharam property is called Maharam trace (compare with [2], III, 3.4.1).

Theorem 1. $L^1(M, \Phi)$ is a Banach-Kantorovich space if and only if Φ is a Maharam trace.

Let Φ be a $S(\mathcal{A})$ -valued Maharam trace on M and let Ψ be a normal $S(\mathcal{A})$ -valued trace on M. We denote by s(a) the support of an element $a \in S(\mathcal{A})$. A trace Ψ is called absolutely continuous with respect to Φ if $s(\Psi(p)) \leq s(\Phi(p))$ for all projections $p \in M$.

The next theorem is a noncommutative version of the Radon-Nikodym-type theorem for Maharam traces (compare with [2], VI, 6.1.11).

Theorem 2. Let Φ be a $S(\mathcal{A})$ -valued Maharam trace on a von Neumann algebra M. If Ψ is a normal $S(\mathcal{A})$ -valued trace on M absolutely continuous with respect to Φ , then there exists an operator $y \in L^1_+(M, \Phi) \cap S(Z(M))$ such that

$$\Psi(x) = \widehat{\Phi}(yx)$$

for all $x \in M$ (here Z(M) is the center of M).

- [1] Muratov M.A., Chilin V.I. Algebras of measurable and locally measurable operators. Kyiv, Pratsi In-ty matematiki NAN Ukraini. 2007. V. 69. – 390 p.(Russian).
- [2] Kusraev A.G., Dominanted Operators, Mathematics and its Applications, 519, Kluwer Academic Publishers. — Dordrecht, 2000. – 446 p.