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Abstract

Differential-difference equations (DDEs) of the form u
(k)
n (t) = Fn(t, un+a, . . . , un+b)

with k ≥ 2 are studied for Lie symmetries and preliminary classification. Explicit
forms of equations are given for those admitting at least one intrinsic Lie symmetry.
An algorithmic mechanism is also proposed to automate the symmetry calculation for
fairly general DDEs via computer algebras.

1. Introduction

The Lie symmetry method [1, 2] for differential equations has by now been well established,
though the same theory for differential-difference equations (DDEs) [3–7] or difference
equations [8, 9] is much less studied or understood. Symmetry Lie algebras often go a
long way to explain the behaviour of the corresponding system, just like the algebra on
which its Lax pair (if any) lives would through the use of ISMs [10, 11]. To overcome
the difficulties set by the infinite number of variables in DDEs, the concept of intrinsic
symmetries [3] has been introduced to simplify the task of symmetry calculations. Our
purpose here is to study the DDEs of the form

u(k)
n (t) = Fn(t, un+a, . . . , un+b) , n ∈ Z , a ≤ b , k ≥ 2 (1.1)

where we use the superindex (i) to denote the i-th partial derivative with respect to (w.r.t.)
t. We note that both a and b in (1.1) are integers and Z will always denote the set of all
integers. We first look for the symmetries

X = ξ(t, ui : i ∈ Z)∂t +
∑
n∈Z

φn(t, ui : i ∈ Z)∂un (1.2)

for system (1.1) and then consider the subsequent task of classification by means of the
intrinsic Lie symmetries in the form

X = ξ(t)∂t + φn(t, un)∂un . (1.3)

We note that systems (1.1) are so far only studied [7] for k = 2 with b = a = −1 w.r.t.
the intrinsic Lie symmetries, and our objective here in this respect is to give an explicit
list of DDEs (1.1) admitting at least one intrinsic Lie symmetry. This thus serves as
a preliminary or semi classification. Complete classification of some more specific form
of (1.1) is still under investigation. Another objective of ours is to devise an algorithmic
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mechanism to automate the calculation of Lie symmetries for DDEs so that the symmetries
could be efficiently calculated for practical problems.
The paper is organized as follows. We first give in Section 2 the general Lie symmetry

for (1.1). We will explain why the study of intrinsic Lie symmetries, particularly with
regard to the classification, will not cause a significant loss of generality. Section 3 serves as
a preliminary classification: the forms of system (1.1) are explicitly given for those bearing
at least one intrinsic Lie symmetry. In Section 4, we will briefly propose an algorithmic
mechanism for calculating intrinsic symmetries by means of computer algebras, along with
several illustrative examples.

2. The general Lie symmetries for (1.1)

We call DDE (1.1) nontrivial if there exists at least one n0 ∈ Z such that Fn0(t, un0+a, . . .,
un0+b) is not a function of only variables t and un0 . Suppose system (1.1) is nontrivial for
at least k=2 and X in (1.2) is a Lie symmetry of the system. Then ξ and φn in (1.2) must
have the following form

ξ = ξ(t), φn =
(k − 1

2
ξ̇(t) + γn

)
un +

∑
i∈Z

cn,iui + βn(t) , k ≥ 2
ξ(t) = α2t

2 + α1t+ α0 , k ≥ 3
(2.1)

where cn,i, αi and γn are all constants. Moreover, (1.2) with (2.1) is a Lie symmetry of
(1.1) iff

φ(k)
n − kξ̇Fn − ξḞn +

∑
i∈Z

φn,uiFi −
b∑

j=a

φn+jFn,un+j = 0 (2.2)

is further satisfied.
We omit the derivation details of (2.1) and (2.2) as they are too lengthy to be put here.

We note that nonintrinsic symmetries do exist for system (1). For example, the system

u
(k)
n (t) =

b∑
j=a
µje

jλtun+j has the nonintrinsic Lie symmetry X = ∂t +
∑

n∈Z

{ ∑
i∈Z
αiun+i −

nλun + βn(t)
}
∂un , and the system u

(k)
n (t) =

b∑
j=a
µjλ

njun+j has the nonintrinsic Lie sym-

metry X = ∂t +
∑

n∈Z

{ ∑
i∈Z
αiλ

niun+i + βn(t)
}
∂un if βn(t) satisfies the original DDEs re-

spectively. In fact we can show that system (1.1) can only have intrinsic Lie symmetries
unless it is linear or ‘essentially’ linear. We will not dwelt upon this here. Instead we
quote without proof one of the results in [12] that all the Lie symmetries of the system

u
(k)
n = f(t, un+c) + g(t, un+a, . . . , un+c−1, un+c+1, . . . , un+b) for k ≥ 2 and a ≤ c ≤ b are

intrinsic if f is nonlinear in un+c and the system is nontrivial.

3. Systems bearing intrinsic Lie symmetries

The classification is in general a very laborious task. Due to the difficulties of handling
nonintrinsic symmetries and their scarceness implied in Section 2 anyway, only intrinsic



Lie Symmetries and Preliminary Classification 91

symmetries are known to be ever considered in this respect. For systems of type (1.1), the
only known results in this connection have been for k = 2 along with b = −a = 1 [7]. We
shall thus mostly consider the case of k ≥ 3 in this section. Apart from two systems related
to two special symmetry Lie algebras, we shall be mainly concerned with systems that
bear at least one intrinsic Lie symmetry rather than the classification via the complete
symmetry Lie algebras. For this purpose, we first show that, for any k ≥ 3, a fiber-
preserving transformation

un(t) = Ωn(yn(t̃ ), t), t̃ = θ(t), (3.1)

will transform system (1.1) into

dk

d t̃k
yn(t̃ ) = F̃n(t̃, yn+a, . . . , yn+b) , (3.2)

iff transformation (3.1) is given by

un(t) = An(γt+ δ)k−1yn(t̃ ) +Bn(t), t̃ =
αt+ β
γt+ δ

, (3.3)

where Bn(t) are arbitrary functions and An, α, β, γ and δ are arbitrary constants satisfying

αδ − βγ = ±1, An �= 0 . (3.4)

We now prove the above statement. First, since it is easy to show inductively

u
(m)
n = Ωn,yn θ̇

my
(m)
n +

(m
1

)
Ωn,ynyn θ̇

my
(m−1)
n ẏn+

+terms of other powers of yn’s derivatives, m ≥ 3 ,
(3.5)

we must have Ωn,ynyn = 0 if (3.1) is to transform (1.1) into (3.2). Hence, (3.1) must take
the form un(t) = fn(t)yn(t̃) +Bn(t). Since it is not difficult to show inductively u

(m)
n (t)=

λm(t)y
(m)
n +µm(t)y

(m−1)
n +νm(t)y

(m−2)
n + · · · for m ≥ 3 in which λm, µm and νm are given

correspondingly by the following more explicit formula

u(m)
n (t) = fn(t)θ̇my(m)

n +
[(
m

1

)
ḟnθ̇

m−1 +

(
m

2

)
fnθ̇

m−2θ̈

]
y(m−1)

n +[(m
2

)
f̈nθ̇

m−2 + 3
(m

3

)
ḟnθ̇

m−3θ̈ + 3
(m

4

)
fnθ̇

m−4θ̈2 +
(m

3

)
fnθ̇

m−3
...
θ

]
y

(m−2)
n + · · · ,

(3.6)

in order (3.1) transforms (1.1) into (3.2), it is clearly necessary that µk(t) = νk(t) =
0, read off from (3.6), be satisfied. Removing f̈n from these two equations, we have

ḟnθ̇θ̈ +
k − 2
2
fnθ̈

2 +
1
3
fnθ̇

...
θ = 0, ḟnθ̇ +

k − 1
2
fnθ̈ = 0 which are equivalent to 3θ̈2 = 2θ̇

...
θ

and ḟnθ̇ +
k − 1
2
fnθ̈ = 0. The solution of the above equations (with θ̇ �= 0) is elementary:

it is given by

un(t) = An(t+ α1)k−1yn(t̃) +Bn(t), t̃ =
β1

t+ α1
+ γ1, (3.7)

for θ̈ �= 0, and is otherwise by
un(t) = Anyn(t̃) +Bn(t), t̃ = β1t+ α1, . (3.8)
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In (3.7) and (3.8), the function Bn(t) and constants An, α1, β1 and γ1 are arbitrary and
satisfy β1An �= 0. It is easy to verify that (3.7) and (3.8) together are equivalent to (3.3)
with (3.4).
We now proceed to prove the sufficiency. For this purpose, we can show inductively

for m ≥ 1

x(m) = A
m∑

i=0

(
m

i

)
(−β1)iAm−i

k−1−i(t+ α1)k−1−m−iy(i), (3.9)

where

x(t) = A(t+ α1)k−1y(θ(t)), θ(t) =
β1

t+ α1
+ γ1, k ≥ 2

Ai
n = n(n− 1) · · · (n− i+ 1), A0

n = 1 .

The proof is again meticulous but straightforward, and is thus skipped here for brevity.
If we choose m = k, then each coefficient in front of y(i) in (3.9) for 0 ≤ i < m has the
factor (m− k) and is thus zero. Hence, we obtain simply

x(k) = A(−β1)k(t+ α1)−k−1y(k) . (3.10)

It is now clear from (3.10) that (3.7) will transform (1.1) into (3.2). Since the sufficiency
regarding to (3.8) is almost trivial, we have completed the proof of the form-invariance of
(1.1) under (3.1) and (3.3).
Notice that under un(t) = yn(t̃)/σn(t) +Bn(t) with t̃ = θ(t), the symmetry

X = ξ(t)∂t +
[
(
k − 1
2
ξ̇(t) + γn)un + βn(t)

]
∂un (3.11)

will read as

X = ξθ̇∂t̃ +
{[k − 1

2
ξ̇ + γn +

σ̇n

σn
ξ
]
yn + σn

[
(
k − 1
2
ξ̇ + γn)Bn − ξḂn + βn

]}
∂yn .(3.12)

Of course, for (1.1) to become (3.2), we need σn(t) to be given for k ≥ 3 by (3.3) and for
k = 2 [7] by σn(t) = θ̇

1
2 /An with An �= 0. We can thus conclude from (2.1), (3.3) and (3.4)

that there are exactly three canonical forms of ξ(t) �= 0 given by
(i) ξ(t) = 1, (ii) ξ(t) = t, (iii) ξ(t) = t2 + 1 (3.13)

because all other cases can be transformed via (3.3) into one of above three. In all these
three cases, we may choose Bn(t) such that

ξ(t)Ḃn(t) =
(k − 1

2
ξ̇(t) + γn

)
Bn + βn(t) . (3.14)

This means we may choose simply βn(t) = 0 in all the three canonical cases in (3.13). If
ξ(t) = 0, then (3.14) still has a solution Bn = −βn/γn if γn �= 0. Hence the fourth and
the last canonical cases are

(iv) ξ(t) = 0, γn �= 0, βn(t) = 0, (v) ξ(t) = 0, γn = 0, βn(t) �= 0 . (3.15)

We note from (3.12) that systems in case (v) with βn and β̃n are equivalent if β̃n(t) =
σn(t)βn(t). Also that in the case of k = 2, cases (ii) and (iii) are transformable to case
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(i) due to allowed more general fiber transformations. Note furthermore that although in
principle one should replace cases (iv) and (v) with the following more general form

ξ(t) = 0, γm �= 0, βm(t) = 0, γn = 0, βn(t) �= 0, m ∈ S, n ∈ Z\S
for some subset S of Z, such a mixture (which won’t exist if the continuity in n is imposed
on Fn as adopted in [7]) will lead to only Fn = Fd,n for n ∈ S and =Fe,n for n ∈ Z\S,
where Fd,n and Fe,n are just the Fn given in (3.17)d and (3.17)e, respectively.
With the above preliminaries, we are ready to give the general forms of Fn such that

(1.1) has at least one intrinsic Lie symmetry. The form of Fn is thus to be determined
from (2.2), or more explicitly for k ≥ 2,

k − 1
2
ξ(k+1)un + β(k)

n +
[
γn − k + 1

2
ξ̇
]
Fn − ξḞn−

n+b∑
i=n+a

[(k − 1
2
ξ̇ + γi

)
ui + βi

]
Fn,ui = 0 .

(3.16)

In fact, for three canonical cases in (3.13) with βn = 0 and another two in (3.15), the
solutions of (3.16) are

(i) Fn = eγntfn(ζn+a, . . . , ζn+b), ζi = uie
−γit

(ii) Fn = tγn−(k+1)/2fn(ζn+a, . . . , ζn+b), ζi = uit
−γi−(k−1)/2

(iii) Fn =
exp (γn tan−1(t))
(t2 + 1)(k+1)/2

fn(ζn+a, . . . , ζn+b), ζi = ui
(t2 + 1)(1−k)/2

exp (γn tan−1(t))

(iv) Fn = u
γn/γn+c
n+c fn(t, ζn+a, . . . , ζn+c−1, ζn+c+1, . . . , ζn+b), ζi =

u
γn+c

i

uγi
n+c

(v) Fn =
β

(k)
n

βn+c
un+c + fn(t, ζn+a, . . . , ζn+c−1, ζn+c+1, . . . , ζn+b),

ζi = uiβn+c − un+cβi

(3.17)

where c is any given integer in [a, b], and the equivalent classes in case (v) are related by
βn ∼ βnσn for the same σn as in (3.12). If 0 ∈ [a, b], then case (iv) in (3.17)d may also be
rewritten as

Fn = unfn(t, ζn+a, . . . , ζn−1, ζn+1, . . . , ζn+b), ζi = u
γn
i u

−γi
n .

Since (ii) and (iii) for k = 2 in (3.13) are transformable to (i) there, formulas in (3.17),
minus the cases of (ii)–(iii), also give the complete list for k = 2. We also note that the
form of Fn in (3.17) can be further refined by extending the symmetry algebras. Since the
details of such undertakings would belong to the scope of complete classification which
will be considered elsewhere in future, we shall limit our attention to providing two cases
which are related to the Toda lattice [13] and the FPU system [14], respectively.
For this purpose, let us choose βn(t) = tm in (3.17)e for 0 ≤ m < k and k ≥ 2. Then

Fn can be written as Fn = fn(t, ζn+a, . . . , ζn+c−1, ζn+c+1, . . . , ζn+b) with ζi = ui − un+c.
It is obvious that this Fn also fits the form of (3.17)a with γi = 0 if the function fn is
independent of t. Hence, for

Fn = fn(ζn+a, . . . , ζn+c−1, ζn+c+1, . . . , ζn+b), ζi = ui − un+c , (3.18)
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system (1.1) has the following (k+1)-dimensional nilpotent symmetry Lie algebra

Xi = ti∂un , i = 0, 1, . . . , k − 1; Xk = ∂t . (3.19)

We now look for an additional symmetry Y of the form (3.11) such that the new Lie
algebra formed by {Xi, 0 ≤ i ≤ k, Y} contains {Xi, 0 ≤ i ≤ k} as its nilradical, i.e.,
[Xi,Y] =

k∑
j=0
αi,jXj . Since, for 0 ≤ i < k,

[Xk,Y] = ξ̇∂t+
(k − 1

2
ξ̈un+ β̇n

)
∂un , [Xi,Y] =

(
γnt

i+
k − 1
2
tiξ̇− iti−1ξ

)
∂un ,(3.20)

we conclude that both ξ and γnt+(k−1)tξ̇/2−iξ must be linear in t. Hence (3.20) implies
[Xi,Y] is linear in Xi for 0 ≤ i < k and [Xk,Y] = ξ̇∂t + β̇n∂un which in turn induces

dk+1

d tk+1
βn(t) = 0 . (3.21)

In order the structure constants in [Xi,Y] be independent of n, we set γn = γ and β̇n(t) =
β(t). In this way it is easy to see that Y can be any linear combination of

Y1 = t∂t +
(k − 1

2
+ γ

)
un∂un , γ �= −k − 1

2
;

Y2 = t∂t + ωn∂un , ωi �= ωj ∀i �= j ;
Y3 = t∂t + (kun + tk)∂un ; Y4 = un∂un

(3.22)

modulus some linear combinations of Xi. The FPU and Toda systems turn out to be
related to Y1 and Y2, respectively. For symmetry operator Y1, (3.16) reduces to

(
γ − k + 1

2

)
Fn − tḞn −

∑
i

(k − 1
2

+ γ
)
uiFn,ui = 0

which is solved by (and is consistent with (3.18) )

Fn = (un+c − un+d)
γ−(k+1)/2
γ+(k−1)/2×

×fn(ζn+a, . . . , ζn+c−1, ζn+c+1, . . . , ζn+d−1, ζn+d+1, . . . , ζn+b),

ζi = (ui − un+d)/(un+c − un+d), a ≤ c �= d ≤ b .
(3.23)

When b = −a = 1, γ = (1− 3k)/2 and fn(ζn+a) = 1− ζ2n+a, the FPU type system reads
with c = 1 and d = 0 as

u(k)
n = (un+1 − un)2 − (un − un−1)2 . (3.24)

We note that for k = 2 eq.(3.24) can be rewritten as the original form of the FPU [14]
system ÿn − (yn+1 + yn−1 − 2yn)[1 + ω(yn+1 − yn−1)] = 0 under the transformation yn =
un/ω − n/(2ω).
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For Y2 in (3.22), eq.(3.16) is reduced to kFn+ tḞn+
∑
i
ωiFn,ui = 0 whose solution reads

for any given a ≤ c �= d ≤ b as

Fn = exp
[
− k un+c − un+d

ωn+c − ωn+d

]
×

×fn(ζn+a, . . . , ζn+c−1, ζn+c+1, . . . , ζn+d−1, ζn+d+1, . . . , ζn+b),

ζi = (ωn+c − ωn+d)ui + (ωn+d − ωi)un+c + (ωi − ωn+c)un+d.

(3.25)

When b = −a = −c = 1 and d = 0, then (3.25) reduces to

Fn = exp
[
− k un−1 − un

ωn−1 − ωn

]
fn(ζn+1), ζn+1 =

∑
n−1,n,n+1

cyclic

(ωn−1 − ωn)un+1 . (3.26)

Let furthermore ωn = kn and fn(ζn+1) = 1 − exp(ζn+1/k). Then (3.26) gives rise to the
following Toda type system

u(k)
n (t) = exp(un−1 − un)− exp(un − un+1) .

4. Local overdeterminacy in explicit symmetry calculation

In this section, we shall consider a fairly large class of DDEs of the form

Gn(t, ∂kui : |k|+ |i− n| ≤M) = 0, ∀n ∈ I , (4.1)

where t = (t1, . . . , tm), ∂k = ∂k1
t1 · · · ∂km

tm , |k| = k1 + · · ·+ km, I is the index grid, and Gn is
uniformly defined w.r.t. n in the sense that all partial differentiations of Gn commute with
the index n. The purpose here is to propose a mechanism to find intrinsic Lie symmetries
for uniformly defined DDEs through the use of such computer algebras that can deal with
[15] systems of f inite variables. Let the intrinsic symmetry be given by

X = ξ(t)∂t + η(t, n, un)∂nn ≡
m∑

j=1

ξj∂tj +
∑
n∈I

ηn∂un , (4.2)

and let the Lie symmetry for (4.1) over n ∈ J, a finite subset of I, be denoted by

XJ = ξJ∂t +
∑
i∈J

ηJ
i ∂ui , (4.3)

then our mechanism is based on the following observation:

If ηJ
n = η

J(t, n, un) is uniformly defined w.r.t. n with ξJ = ξJ(t), then (4.2) with ξ = ξJ

and ηi = ηJ
i (∀i ∈ I) is the intrinsic Lie symmetry of (4.1).

For convenience, we shall always denote by RN the subsystem of N equations Gj = 0
for j = n, . . . , n+N − 1. The algorithm proposed in this section for finding intrinsic Lie
symmetries has in fact been applied to various DDEs, and all results have been consistent
with the analytic ones whenever the later ones do exist. For instance, our consideration
for the inhomogeneous Toda lattice [16]

ün − 1
2
u̇n + (

1
4
− n

2
) +

[1
4
(n− 1)2 + 1

]
eun−1−un −

[1
4
n2 + 1

]
eun−un+1 = 0
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for R4 will lead to the symmetry generators ∂t, ∂un , et/2∂un and e−t/2∂t+(12 −n)e−t/2∂un

which are exactly those obtained in [6] analytically. New but straightforward cases include
applying the procedure to the discretized KZ equation

un,xt + ∂x(un,xun) + un+1 + un−1 − 2un = 0

for R3, which gives the symmetry (αt+ β)∂t + (f(t)− αx)∂x + (ḟ(t)− 2αun)∂un , and to
the 2-dimensional system

∂x∂tun(x, t) = exp (un+1(x, t) + un−1(x, t)− 2un(x, t))

which gives the symmetry (α1(t) + β1(x) + (α2(t) + β2(x))n− (1/2)n2(ḟ(t) + g′(x)))∂un +
f(t)∂t + g(x)∂x for arbitrary f(t), g(x), αi(t) and βi(x). Likewise the 1-dimensional

ün(t) = exp (un+1 + un−1 − 2un), n ∈ Z, (4.4)

via R5 will lead to the intrinsic Lie symmetry (c1+c2t)∂t+(c3n+c4+(c5n+c6)t−c2n2)∂un

for (4.4), which is again consistent with the analytic results in [7]. As for the similarity
solutions, we only note that the reduction un(t) = −(n2+a2) log t+wn with a �= 0, induced
by the symmetry −t∂t+(n2+a2)∂un , reduces (4.4) into wn+1+wn−1−2wn = log(n2+a2)
which has a solution (n �= 1, n �= 0)

wn =
|n|−1∑
i=1

(|n| − i) log(i2 + a2) + nw1 − (n− 1)w0 + χ(−n)|n| log a2,

where w0 and w1 are treated as arbitrary constants and χ is the step function defined by
χ(t) = 0 if t ≤ 0 and =1 otherwise.

Acknowledgment

The author wishes to thank Professor Pavel Winternitz for the interesting discussions and
constructive comments. The author is also grateful to the CRM, University of Montreal
for the hospitality – the main work in this paper is done in the period of his sabbatical
leave there.

References

[1] Olver P.J., Application of Lie groups to differential equations, Springer, New York, 1986.

[2] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of
Nonlinear Mathematical Physics, Kluwer, Dordrecht, 1993.

[3] Levi D. and Winternitz P., Phys. Lett. A, 1991, V.152, 335.

[4] Quispel G., Capel H.W. and Sahadevan R., Phys. Lett. A, 1992, V.170, 379.

[5] Levi D. and Winternitz P., J. Math. Phys., 1993, V.34, 3713.

[6] Levi D. and Winternitz P., Lie point symmetries of differential difference equations, in: Symmetries
and integrability of difference equations, D. Levi et al (edrs), CRM Proc. Lect. Notes, 1996, V.9,
199.



Lie Symmetries and Preliminary Classification 97

[7] Levi D. and Winternitz P., J. Math. Phys., 1996, V.37, 5551.

[8] Quispel G.R.W. and Sahadevan R., Phys. Lett. A, 1993, V.184, 64.

[9] Levi D., Vinet L. and Winternitz P., J. Phys. A, 1997, 30, 633.

[10] Jiang Z. and Rauch-Wojciechowski S., J. Math. Phys., 1991, V.32, 1720.

[11] Jiang Z., Inv. Prob., 1989, V.5, 349; Phys. Lett. A, 1990, V.148, 57; J. Austr. Math. Soc. Ser B, 1996,
V.37, 320.

[12] Jiang Z., Differential Lie symmetries of u
(k)
n (t) = Fn(t, un+a, . . . , un+b), Research and Technical

Reports, 97-141, University of New England.

[13] Toda M., Nonlinear Waves and Solitons, Kluwer, London, 1989.

[14] Fermi E., Pasta J. and Ulam S., Studies on nonlinear problems. I, in: Nonlinear wave motion,
A.C. Newell (ed.), Lect. in Appl. Math., 1974, V.15, 143.

[15] Vu K.T. and McIntosh C., DESOLV (Maple), Department of Mathematics, Monash University,
Melbourne, 1996.

[16] Levi D. and Ragnisco O., J. Phys. A, 1991, V.24, 1729.


