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Abstract

Dicrete symmetries (DS) of the Schrödinger-Pauli equation are applied to reduction
of this equation and search for its hidden supersymmetries. General problems of using
of DS in quantum mechanics are discussed.

1 Introduction

It is well-known that quantum mechanical systems are usually described in terms of
differential equations and that symmetries of these equations form powerful tools for
their studies. They are used to separate variables, to find out solutions of linear and
nonlinear differential equations as well as to solve associated labelling problems, to derive
spectra and related complete sets of functions of linear differential operators, to derive
the corresponding conservation laws, to guide constructions of new theories, i.e., to figure
out differential equations invariant with respect to a given symmetry, and so on.

Let us recall that in quantum mechanics the statement: ”The physical system S has a
symmetry group G” means that there is a group of transformations leaving the equation
of motion of system S as well as the rules of quantum mechanics invariant. In particular
no transformation from symmetry group G is allowed to produce an observable effect.
Thus if system S is described by an observable A in states |ψ >, |φ >, . . ., then the
system S′ obtained by a symmetry transformation g ∈ G, g : S → S′, is desribed by the
corresponding observable A′ in the states |ψ′ >, |φ′ >, . . . and the equality∣∣< ψ′|A′|φ′ >∣∣2 = |< ψ|A|φ >|2 (1.1)

holds. Thus, as shown by E. Wigner [1], to any symmetry g there exists a unitary or
antiunitary operator Ug (representing g in the Hilbert space H of the system S) such that

|ψ′ >= Ug|ψ > and
A′ = UgAU

+
g

(1.2)

describe the effect of g, i.e., the change S → S′.
There are two types of symmetries: continuous (e.g., rotations) and discrete (e.g.,

parity transformation). For continuous symmetries any g ∈ G is a function of one or more
continuous parameters αi, i = 1, 2, . . . , n, g(α1, α2, . . . , αn) and any Ug can be expressed
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in terms of Hermitian operators B1, B2, . . . via eiαjBj , where each of Bj is an observable,
i.e., a constant of motion, due to continuity of parameters αj , since for a given quantum-
mechanical system described by Hamiltonian H[

eiαjBj , H
]
= 0 ⇔

∑
n=0

(iαj)n

n!
[
Bn

j , H
]
= 0 ⇔ [Bj , H] = 0. (1.3)

Now, if g ∈ G is a discrete symmetry, it does not depend on continuous parameters. The
corresponding operator Ug can still be written as eiB or KeiB, where K is an anti-unitary

operator, but in fact [B,H] = 0 is only a sufficient condition for
∑
n=0

(i)n

n!
[Bn, H] = 0 but

not necessary. However, all discrete symmetries in physics fulfil the condition U2
g = 1.

Thus if Ug is unitary (UgU
+
g = U+

g Ug = 1) it is also Hermitian U+
g = Ug and therefore an

observable. This is not true for U2
g �= 1.

Now we are ready to review some results derived by A. G. Nikitin and myself [2, 3, 4].

2 Involutive symmetries and reduction of the physical sys-
tems

Consider the free Dirac equation

L0ψ = (iγµ∂µ −m)ψ = 0 (2.1)

with

γ0 =
(

0 12

12 0

)
, γa =

(
0 −σa

σa 0

)
, a = 1, 2, 3, γ5 =

(
12 0
0 12

)
.

It is invariant w.r.t the complete Lorentz group. Involutive symmetries form a finite
subgroup of the Lorentz group consisting of 4 reflections of xµ, 6 reflections of pairs of
xµ, 4 reflections of triplets of xµ, reflection of all xµ and the identity transformation.

If the coordinates xµ in (2.1) are transformed by these involutive symmetries, function
ψ(x) cotransforms according to a projective reprezentation of the symmetry group, i.e.,
either via ψ(x) → Rklψ(x) or via ψ(x) → Bklψ(x). Here Rkl and Bkl = CRkl are linear
and antilinear operators respectively which commutes with L0 and consequently transform
solutions of (2.1) into themselves. The operators Rkl = −Rkl form a reprezentation of the
algebra so(6) and C is the operator of charge conjugation Cψ(x) = iγ2ψ

∗(x). Among the
operators Bkl there are six which satisfy the condition that (Bkl)

2 = −1 and nine for which
(Bkl)

2 = 1. We shall consider further only Bkl fulfilling the last condition (for the reason
mentioned in the Introduction and since otherwise Bkl cannot be diagonalized to real γ5

and consequently used for reduction). As shown in [2] the operators Rkl, Bkl and C form
a 25–dimensional Lie algebra. It can be extended to a 64-dimensional real Lie algebra or
via non-Lie symmetries (for details see [3]).

Let us discuss now only one example how to use discrete symmetries to reduce a physical
system into uncoupled subsystems (for the other examples see [2]). Let the system be a
spin 1

2 particle interacting with a magnetic field described by the Dirac equation

Lψ(x) = (γµ(i∂µ − eAµ)−m)ψ(x) = 0. (2.2)
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Eq. (2.2) is invariant w.r.t. discrete symmetries provided Aµ(x) cotransforms approprietly.
For instance,

Aµ(−x) = −Aµ(x) (2.3)

for x → −x and ψ(x) → R̂ψ(x) = γ5θ̂ψ(x) = γ5ψ(−x). Then, diagonalizing symmetry
operator R̂ by means of the operator

W =
1√
2
(1 + γ5γ0)

1√
2
(1 + γ5γ0θ̂), (2.4)

the equation (2.2) is reduced to the block diagonal form:

(−µ(i∂0 − eA0)− !σ(i!∂ − e !A)θ̂ −m)ψµ(x) = 0, (2.5)

where µ = ±1 and ψµ are two-component spinor satisfying γ5ψµ = µψµ.
If equations (2.5) admit again a discrete symmetry then they can further be reduced

to one-component uncoupled subsystems.

3 Discrete symmetries and supersymmetries

It was shown in [4] that extended, generalized and reduced supersymmetries appear rather
frequently in many quantum-mechanical systems. Here I illustrate only one thing – ap-
pearance of extended supersymmetry in the Schrödinger-Pauli equation describing a spin
1
2 particle interacting with a constant and homogeneous magnetic field !H:

Ĥψ(x) =
[
(−i!∂ − e !A)2 − 1

2
eg!σ. !H

]
ψ(x) = 0 (3.1)

This system is exactly solvable (for details see [4]). One standard supercharge of this
equation is

Q1 = !σ(−i!∂ − e !A),

Q2
1 = Ĥ.

(3.2)

Three other supercharges can be constructed due to the fact that (3.1) is invariant w.r.t.
space reflections Ra of xa, a = 1, 2, 3. It was found in [4] that they are of the form:

Q2 = iR3!σ.(−i!∂ − e !A),

Q3 = iCR4!σ.(−i!∂ − e !A),

Q4 = iCR2!σ.(−i!∂ − e !A).

They are integrals of motion for (3.1) (notice that without the usual ”fermionic” operators)
and responsible for degeneracy of the energy spectrum of the system. For many other
examples see [4].
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