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Abstract

The general d’Alembert equation ✷u + f(t, x, u) = 0 is considered, where ✷ is the
two-dimensional d’Alembert operator. We classify the equation for functions f by
which it admits several Lie symmetry algebras, which include the Lorentz symmetry
generator. The conditional symmetry properties of the equation are discussed.

1 Introduction

In the present paper, we derive some results on the invariants of the nonlinear wave
equation

✷u + f(x0, x1, u) = 0, (1.1)

where ✷ := ∂2/∂x2
0 − ∂2/∂x2

1 and f is an arbitrary smooth function of its arguments, to
be determined under some invariance conditions.

It is well known that Lie transformation groups play an important role in the investi-
gation of nonlinear partial differential equations (PDEs) in modern mathematical physics.
If a transformation leaves a PDE invariant, the PDE is said to possess a symmetry. A
particular class of symmetries, known as the Lie point symmetries, has been studied by
several authors (see, for example, the books of Ovsyannikov [10], Olver [9], Fushchych
et al. [7], Ibragimov [8], Steeb [11]). Lie symmetries of nonlinear PDEs may be used to
construct exact solutions and conservation laws for the equations (Fushchych et al. [7]).
The classification of PDEs with respect to their Lie symmetry properties is an important
direction in nonlinear mathematical physics. In particular the book of Fushchych, Shtelen
and Serov [7] is devoted to the classification of several classes of nonlinear PDEs and sys-
tems of PDEs admitting several fundamental Lie symmetry algebras, such as the Poincaré
algebra, the Euclidean and Galilean algebras, and the Schrödinger algebra. They mostly
consider equations in (1+3)-dimensions as well as arbitrary-dimensional equations, usually
excluding the (1+1)-dimensional cases. The classification of the (1+1)-dimensional wave
equation (1.1) is the main theme in the present paper. The invariance of (1.1) with respect
to the most general Lie point symmetry generator, Lie symmetry algebras of relativistic
invariance, and conditional invariance is considered. We present the theorems without
proofs. The proofs are given in Euler et al. [2].
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2 The General Lie point symmetry generator

Before we classify (1.1) with respect to a particular set of Lie symmetry generators, we
establish the general invariance properties of (1.1).

Theorem 1. The most general Lie point symmetry generator for (1.1) is of the form

Z = {g1(y1) + g2(y2)} ∂

∂x0
+ {g1(y1) − g2(y2)} ∂

∂x1
+ {ku + h(x0, x1)} ∂

∂u
, (2.1)

where g1, g2, and h are arbitrary smooth functions of their arguments and k ∈ R. One
must distinguish between three cases:

a) For g1 �= 0 and g2 �= 0, the following form of (1.1) admits (2.1):

✷u +
exp(kε)

g1(y1)g2(y2)

{
−4

∫
g1(y1)g2(y2)

∂2h

∂y1∂y2
exp(−kε) dε + G(Y1, Y2)

}
= 0. (2.2)

Here, G is an arbitrary smooth function of its arguments, and

dy1

dε
= 2g1(y1),

dy2

dε
= 2g2(y2),

Y1 =
∫

dy1

g1(y1)
−

∫
dy2

g2(y2)
,

Y2 = u exp(−kε) −
∫

h (ε) exp(−kε) dε,

y1 = x0 + x1, y2 = x0 − x1.

b) For g1 = 0 and g2 �= 0, the following form of (1.1) admits (2.1):

✷u + G(Y1, Y2) g2(y2)−1 exp(kε) = 0, (2.3)

where G is an arbitrary smooth function of its arguments, and

Y1 = x0 + x1, Y2 = u exp(−kε) −
∫

h(ε) exp(−kε)dε,

dy2

dε
= 2g2(y2), y2 = x0 − x1.

c) For g1 �= 0 and g2 = 0, the following form of (1.1) admits (2.1):

✷u + G(Y1, Y2) g1(y1)−1 exp(kε) = 0, (2.4)

where G is an arbitrary smooth function of its arguments, and

Y1 = x0 − x1, Y2 = u exp(−kε) −
∫

h(ε) exp(−kε)dε,

dy1

dε
= 2g1(y1), y1 = x0 + x1.
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3 A particular Lie symmetry algebra

As a special case of the above general invariance properties, we now turn to the clas-
sification of (1.1) with respect to the invariance under the Lorentz, scaling, and conformal
transformations, the Lie generators of which are given by

L01 = x1
∂

∂x0
+ x0

∂

∂x1
, S = x0

∂

∂x0
+ x1

∂

∂x1
+ λu

∂

∂u
,

K0 = (x2
0 + x2

1)
∂

∂x0
+ 2x0x1

∂

∂x1
+ α(x0, x1)

∂

∂u
,

K1 = −2x0x1
∂

∂x0
− (x2

0 + x2
1)

∂

∂x1
− β(x0, x1)

∂

∂u
.

(3.1)

Here, α and β are arbitrary smooth functions and λ ∈ R, to be determined for the
particular Lie symmetry algebras. We are interested in the 4-dimensional Lie symmetry
algebra spanned by {L01, S,K0,K1}, the 3-dimensional Lie symmetry algebra spanned by
{L01,K0,K1}, the 2-dimensional case {L01, S} as well as the invariance of (1.1) under the
Lorentz transformation generated by {L01}. The following Lemma gives the conditions
on α and β for the closure of the Lie algebras:

Lemma.
a) The generators {L01, S,K0,K1} span the 4-dimensional Lie algebra with commutation
relations as given in the commutator table below if and only if

α(x0, x1) = cx0(x2
0 − x2

1)
λ/2, β(x0, x1) = cx1(x2

0 − x2
1)

λ/2, (3.2)

where c is an arbitrary real constant.

b) The generators {L01,K0,K1} span the 3-dimensional Lie algebra with commutations as
given in the commutator table below if and only if

α(x0, x1) = (x0 + x1)φ(y) + (x0 + x1)−1ψ(y),

β(x0, x1) = (x0 + x1)φ(y) − (x0 + x1)−1ψ(y),
(3.3)

where φ and ψ are restricted by the condition

y2 dφ

dy
− y

dψ

dy
+ ψ = 0, (3.4)

with y = x2
0 − x2

1.

Commutator Table

L01 S K0 K1

L01 0 0 −K1 −K0

S 0 0 K0 K1

K0 K1 −K0 0 0
K1 K0 −K1 0 0
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Using the Lemma, we can prove the following four theorems:

Theorem 2. Equation (1.1) admits the 4-dimensional Lie symmetry algebra spanned by
the Lie generators {L01, S,K0,K1} given by (3.1) if and only if α, β, and equation (1.1)
are of the following forms:

a) For λ �= 0,

α(x0, x1) = c1x0(x2
0 − x2

1)
λ/2, β(x0, x1) = c1x1(x2

0 − x2
1)

λ/2,

whereby (1.1) takes the form

✷u− λc1y
(λ−2)/2 + y−2c2

(
u− c1

λ
yλ/2

)(λ+2)/λ

= 0 (3.5)

with c1, c2 ∈ R and y = x2
0 − x2

1.

b) For λ = 0,

α(x0, x1) = c1x0, β(x0, x1) = c1x1,

whereby (1.1) takes the form

✷u + y−1 exp
(
− 2

c1
u

)
= 0 (3.6)

with c1 ∈ R\{0} and y = x2
0 − x2

1.

Theorem 3. Equation (1.1) admits the 3-dimensional Lie symmetry algebra spanned by
the Lie generators {L01,K0,K1} given by (3.1) if and only if α, β, and equation (1.1) are
of the following forms:

a) For f linear in u, we yield

α(x0, x1) = (x0 + x1)
{
k3y

−1 + k1y
−1 ln y + k4

}
+ (x0 + x1)−1 {k1 ln y + k2y + k3} ,

β(x0, x1) = (x0 + x1)
{
k3y

−1 + k1y
−1 ln y + k2

} − (x0 + x1)−1 {k1 ln y + k2y + k3} ,
and (1.1) takes the form

✷u− 1
y2

(
2k1

k4 − k2
u +

2k1(k3 + k1)
k4 − k2

y−1 +
2k2

1

k4 − k2
y−1 ln y − 4k1 ln y + k5

)
= 0,

where y = x2
0 − x2

1 and k1, . . . , k5 are arbitrary real constants with k1 �= 0, k4 �= k2.

b) For f independent of u, we have

α(x0, x1) = (x0 + x1)
{
k3y

−1 + k4
}

+ (x0 + x1)−1 {k2y + k3} ,
β(x0, x1) = (x0 + x1)

{
k3y

−1 + k4
} − (x0 + x1)−1 {k2y + k3} ,

and (1.1) takes the form

✷u + cy−2 = 0,

where k2, k3, k4 are arbitrary real constants and y = x2
0 − x2

1.
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c) For f nonlinear in u, it holds that

α(x0, x1) = (x0 + x1)
{
k3y

−1 + k2
}

+ (x0 + x1)−1 {k2y + k3} ,
β(x0, x1) = (x0 + x1)

{
k3y

−1 + k2
} − (x0 + x1)−1 {k2y + k3} ,

whereby (1.1) takes the form

✷u + y−2g
(
u− k2 ln y + k3y

−1
)

= 0. (3.7)

Here, k2 and k3 are arbitrary real constants, y = x2
0 − x2

1, and g is an arbitrary smooth
function of its argument.

Theorem 4. Equation (1.1) admits the 2-dimensional Lie symmetry algebra spanned by
the Lie generators {L01, S} given by (3.1) if and only if (1.1) takes the following forms:

a) For λ = 0, (1.1) takes the form

✷u + y−1g (u) = 0,

where g is an arbitrary function of its argument and y = x2
0 − x2

1.

b) For λ �= 0, (1.1) takes the form

✷u + u(λ−2)/λg
(
y−λ/2u

)
= 0, (3.8)

where g is an arbitrary function of its argument and y = x2
0 − x2

1.

Theorem 5. Equation (1.1) admits the Lorentz transformation generated by {L01} if and
only if (1.1) takes the form

✷u + g(y, u) = 0, (3.9)

where g is an arbitrary function of its arguments and y = x2
0 − x2

1.

4 Lie symmetry reductions

In this section, we reduce the nonlinear equations stated in the above theorems to ordinary
differential equations. This is accomplished by the symmetry Ansätze which are obtained
from the first integrals of the Lie equations.

The invariants and Ansätze of interest are listed in Table 1 and the corresponding
reductions in Table 2.

Remark. The properties of the reduced equations may, for example, be studied by the
use of Lie point transformations and the Painlevé analysis. Some of the equations listed
in Table 2 were considered by Euler [3]. In particular, the transformation properties of
the equation

ϕ̈ + f1(ω)ϕ̇ + f2(ω)ϕ + f3(ω)ϕn = 0,

where f1, f2, and f3 are smooth functions and n ∈ Q, were studied in detail by Euler [3].
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Table 1

Generator ω u(x0, x1) = f1(x0, x1)ϕ(ω) + f2(x0, x1)

L01 ω = x2
0 − x2

1 f1 = 1, f2 = 0

S ω =
x0

x1
f1 = xλ

0 , f2 = 0

Theorem 2a: f1 = 1, f2 =
c1

λ
ωλ/2x

λ/2
1

K0 ω =
x2

0 − x2
1

x1
Theorem 2b: f1 = 1, f2 =

c1

2
lnx1

Theorem 3c: f1 = 1, f2 = k2 lnx1 − k3

ωx1

Theorem 2a: f1 = 1, f2 =
c1

λ
ωλ/2x

λ/2
0

K1 ω =
x2

0 − x2
1

x0
Theorem 2b: f1 = 1, f2 =

c1

2
lnx0

Theorem 3c: f1 = 1, f2 = k2 lnx0 − k3

ωx0

Table 2

We refer to ... Reduced Equation

L01 :

4ωϕ̈ + 4ϕ̇− c1λω
(λ−2)/2 + c2ω

−2
(
ϕ− c1

λ
ωλ/2

)(λ+2)/λ

= 0

S :
Theorem 2a ω2(ω2 + 1)ϕ̈− 2ω(ω2 − λ)ϕ̇ + λ(λ− 1)ϕ− c1λ(1 − ω−2)(λ−2)/2

+c2(1 − ω−2)−2
(
ϕ− c1

λ
(1 − ω−2)λ/2

)(λ+2)/λ

= 0

K−
0 and K+

1 :
ω2ϕ̈ + 2ωϕ̇∓ c2ω

−2ϕ(λ+2)/λ = 0

L01 :

4ωϕ̈ + 4ϕ̇ + ω−1 exp
(
−2ϕ

c1

)
= 0

S :

Theorem 2b (ω2 − 1)ϕ̈ + 2ωϕ̇ + (1 − ω2)−1 exp
(
−2ϕ

c1

)
= 0

K+
0 and K−

1 :

ω2ϕ̈ + 2ωϕ̇± c1

2
+ ω−1 exp

(
−2ϕ

c1

)
= 0



76 M. Euler and N. Euler

Table 2 (Continued)

We refer to ... Reduced Equation

L01 :
4ωϕ̈ + 4ϕ̇ + ω−2g

(
ϕ− k2 lnω + k3ω

−1
)

= 0
Theorem 3c K−

0 and K+
1 :

ω2ϕ̈ + 2ωϕ̇ + 4k3ω
−2 − k2 ∓ ω−2g (ϕ− k2 lnω) = 0

L01 :
4ωϕ̈ + 4ϕ̇ + ω−1g(ϕ) = 0

Theorem 4a S :
(1 − ω2)ϕ̈− 2ωϕ̇− (1 − ω2)−1g(ϕ) = 0

L01 :
4ωϕ̈ + 4ϕ̇ + ϕ(λ−2)/λg

(
ω−λ/2ϕ

)
= 0

Theorem 4b S :
2ω2(1 − ω2)ϕ̈ + 2ω(λ− ω2)ϕ̇ + λ(λ− 1)ϕ
+ϕ(λ−2)/λ g

(
(ω2 − 1)−λ/2ϕ

)
= 0

Theorem 5 L01 :
4ωϕ̈ + 4ϕ̇ + g(ω, ϕ) = 0

5 Conditional symmetries

An extension of the classical Lie symmetry reduction of PDEs may be realized as follows:
Consider the compatibility problem posed by the following two equations

F ≡ ✷u + f(x0, x1, u) = 0, (5.1)

Q ≡ ξ0(x0, x1, u)
∂u

∂x0
+ ξ1(x0, x1, u)

∂u

∂x1
− η(x0, x1, u) = 0. (5.2)

Here, (5.1) is the invariant surface condition for the symmetry generator

Z = ξ0(x0, x1, u)
∂

∂x0
+ ξ1(x0, x1, u)

∂

∂x1
+ η(x0, x1, u)

∂

∂u
.

A necessary and sufficient condition of compatibility on ξ0, ξ1, and η is given by the
following invariance condition (Fushchych et al. [7], Euler et al. [4], Ibragimov [8])

Z(2)
∣∣∣
F=0, Q=0

= 0. (5.3)

A generator Z satisfying (5.3) is known as a Q-conditional Lie symmetry generator
(Fushchych et al. [7]). Note that conditional symmetries were first introduced by Bluman
and Cole [1] in their study of the heat equation.
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Let us now study the Q-symmetries of (1.1). It turns out that it is more convenient to
transform (1.1) in light-cone coordinates, i.e., the transformation

x1 → 1
2
(x0 + x1), x0 → 1

2
(x0 − x1), u → u.

Without changing the notation, we now consider the system (written in jet coordinates)

F ≡ u01 + f(x0, x1, u) = 0,

Q ≡ u0 + ξ1(x0, x1, u)u1 − η(x0, x1, u) = 0,

where we have normalized ξ0. After applying the invariance condition (5.3) and equating
to zero the coefficients of the jet coordinates 1, u1, u2

1, u
3
1, u11, and u1u11, we obtain the

nonlinear determining equations:

∂ξ1

∂u
= 0,

∂ξ1

∂x0
= 0,

∂2η

∂u2
ξ1 = 0, (5.4)

∂2η

∂x0∂u
− ∂2ξ1

∂x0∂x1
+

∂2η

∂u2
η − ∂2η

∂x1∂u
ξ1 = 0, (5.5)

∂f

∂x0
+ ξ1

∂f

∂x1
+ η

∂f

∂u
+ f

(
∂ξ1

∂x1
− ∂η

∂u

)
+

∂2η

∂x1∂u
η +

∂2η

∂x0∂x1
= 0. (5.6)

According to (5.4), we need to consider two cases:

Case 1.
∂2η

∂u2
= 0 and ξ1 = ξ1(x1).

By solving (5.5), η takes on the form

η(x0, x1, u) = φ(z)u + h(x0, x1), z = x0 +
∫

dx1

ξ1(x1)
, (5.7)

where φ and h are arbitrary smooth functions of their arguments. The condition on f is
given by (5.6), i.e., the following linear first order PDE

∂f

∂x0
+ ξ(x1)

∂f

∂x1
+ (φ(z)u + h(x0, x1)

∂f

∂u
+

(
dξ1

dx1
− φ(z)

)
f

+
u

ξ1(x1)
(
φ′(z)φ(z) + φ′′(z)

)
+

h(x0, x1)
ξ(x1)

+
∂2h

∂x0∂x1
= 0.

(5.8)

Since φ is not a constant, as in the case of a Lie symmetry generator (see Theorem 1), it
is clear that there exist non-trivial Q-symmetry generators of the form

Z =
∂

∂x0
+ ξ1(x1)

∂

∂x1
+ {φ(z)u + h(x0, x1)} ∂

∂u
.

For given functions φ, h, and ξ1, the form of f may be determined by solving (5.8).

Case 2.
∂2η

∂u2
�= 0 and ξ1 = 0.

The determining equations reduce to

∂2η

∂x0∂u
+

∂2η

∂u2
η = 0,

∂f

∂x0
+ η

∂f

∂u
− ∂η

∂u
f +

∂2η

∂x1∂u
η +

∂2η

∂x0∂x1
= 0 (5.9)
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Any solution of (5.9) determines f and η for which system (5.1)–(5.2) is compatible. In
this case, the non-trivial Q-symmetry generators are of the form

Z =
∂

∂x0
+ η(x0, x1, u)

∂

∂u
.
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[4] Euler N., Köhler A. and Fushchych W.I., Q-Symmetry generators and exact solutions for nonlinear
heat conduction, Physica Scripta, 1994, V.49, 518–524.

[5] Euler N., Shul’ga M. and Steeb W.-H., Lie symmetries and Painlevé test for explicitly space- and
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