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Abstract

We find a numerical-analytic solution of a nonlinear boundary-value problem for the
biparabolic differential equation, which describes the mass and heat transfer in the
model of W. Fushchych.

We consider the following generalized law of heat conduction:

q + τq
∂q

∂t
= −λ ∂

∂x

(
T + τT

∂T

∂t

)
, (1)

where λ is the heat conduction coefficient, T is the temperature, q is the heat flux, τq, τT
are the relaxation coefficients.

Using (1), we obtain the following partial differential equation of heat conduction in
relaxing media [1]:

(
L1 +R

∂

∂t
L2

)
T (x, t) = 0, (2)

where

L1 ≡ ∂

∂t
− a ∂

2

∂x2
, L2 ≡ ∂

∂t
− τT
τq

∂2

∂x2
,

a is the temperature conduction coefficient.
Let us take note of the fact that equation (2) satisfies no requirements of symmetry [2].
A more accurate mathematical model of heat and mass transfer consider in [2]. This

model based on the following law of heat conduction:

q + τr
∂q

∂t
= −λ ∂

∂x
(T + 2τrL1T ), (3)

where τr is the relaxation time.
In accordance with (3), we obtain the biparabolic differential equation for heat con-

duction [2–4]

(L1 + τrL2
1)T (x, t) = 0. (4)

It is well known that equation (4) is invariant with respect to the Galilei group G(1, 3)
[2–4].
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We shall consider the process of burning in active media in accordance with the bi-
parabolic equation (4). Solution of this problem reduces to solution of a boundary–value
problem of the following form:

(L+ τrL2)T (x, t) =
(
1 + τr

∂

∂t

)
Q(T ), (5)

T (0, t) = T
′′
xx(0, t) = T (l, t) = T

′′
xx(l, t) = 0, (6)

T (x, 0) = θ(x), T
′
t (x, 0) = ψ(x), (7)

where θ(x), ψ(x) are known functions, Q(T ) = Tm(m ≥ 1) is the potential of heat sources,
l is the scale length.

Introducing the integral transform

Tn(t) =

l∫
0

T (x, t) sin(λnx) dx
(
λn =

nπ

l
x
)
, (8)

we obtain the following Cauchy prroblem:

τr
d2Tn(t)
dt2

+ ν(1)
n

dTn(t)
dt

+ ν(2)
n Tn(t) = Φ(t),

Tn(0) = αn, Tn

′
(0) = βn,

(9)

where

ν(1)
n = 1 + 2τrλ2

n, ν(2)
n = λ(2)

n (1 + τrλ2
n), (10)

{
αn

βn

}
=

l∫
0

{
ϕ(x)
ψ(x)

}
sin (λnx) dx, (11)

Φn(t) =

l∫
0

(
1 + τr

∂

∂τ

)
Q(T (x, t)) sin(λnx) dx. (12)

A solution of the system of equations (9) may be written in the form

T (x, t) = q(x, t) +

t∫
0

l∫
0

(
1 + τr

∂

∂τ

)
Q(T (ξ, τ))K(ξ, x; t− τ) dξdτ, (13)

where

q(x, t) =
2
l

∞∑
n=1

exp(−λ2
nt)

(
1 + τr

(
βn

αn
+ λ2

n

) (
1− e− t

τr

))
αn sin(λnx), (14)

K(ξ, x; t−τ) =
τr
l

(
1− exp

(
− t− τ
τr

)) ∞∑
n=1

exp
(−λ2

n(t− τ)
)
sin(λnx) sin(λnξ).(15)
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In order to construct solution (13), we can use the projective method [5]. Finally, we have
the system of nonlinear algebraic equations

Tjµ = Fjµ +
N∑

i=1

M∑
k=1

cikjµT
m
ik , j = 1, N ; µ = 1,M, (16)

where

Fjµ =
1

∆x∆t

tµ∫
tµ−1

dt

xj∫
xj−1

µ(x, t)dx, cikjµ =
1
∆t

tµ∫
tµ−1

dt

tk∫
tk−1

Gij(t− τ)dτ,

µ(x, t) =
2
l

∞∑
n=1

exp(−λ2
nt) sin(λnx)

(
1 + τr

(
1− e− t

τr

) (
βn

αn
+ λ2

n − γn

2

))
,

γn =

l∫
0

θmi (ξ) sin(λnξ)dξ,

Gij(t− τ) =
τr
l

xj∫
xj−1

dx

xi∫
xi−1

∞∑
n=1

(
1− λ2

n +
(

1
τr

− 1 + λ2
n

)
exp

(
− t− τ
τr

))
×

× exp(−λ2
n(t− τ)) sin(λnx) sin(λnξ)dξ.

After having solved the system of equations (16), we get the solution of the problem by
(5)–(7) . The results of calculations show that the values of temperature determined by
(5)–(7) essentially differ from values determined by (2), (6), (7). In so doing, a regular
change of temperature is similar in both modells. In particular, the blow–up regime [6]
exists.
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