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Abstract

A geometric formulation of an important class of non-local transformations is pre-
sented.

The contemporary geometric theory of Bäcklund transformations (BT) [1–4] is based on
certain integrability conditions for a system of differential equations which are determine
it. These equations are written in terms of connections in the submanifold of a jet-bundle
foliation. One of the first nontrivial examples of BT in three dimensions was described
in paper [1]. In this paper, a geometric formulation of an important class of non-local
transformations is presented. The generalization is obtained due to the use of non-local
transformations of dependent variables and integrability conditions of a more general type.
1. In the fibered submanifold (Ej ,M

′
, ρ

′
) with the k-jet bundle J1(M

′
N

′
), we set an

equation of order t = 2 ≤ l:

Lq
2

(
y, v, v

1
, v
2

)
= 0,

v =
{
vB

}
, M

′
= R (1, . . . , n− 1) ,

(
q = 1, . . . ,m

′
, B = 1, . . . ,m

′)
.

(1)

We use here such notations:

∂µu =
∂u

∂xµ
, {xµ} = (x0, x1, . . . , xn−1).

Let now equation (1) be written in the form of n-th order exterior differential forms
(n-forms)

αc =
1
n!

αc
µ0...µn−1

(y, v)dyµ0 ∧ dyµ1 ∧ . . . ∧ dyµn−1 , (c = 1, . . . , r). (2)

When this system of forms αc is equal to zero, then (1) is fulfiled. So, the system of
αc = 0 forms generates an ideal I = {αc}. The condition for system (2) to be closed is
dαc ⊂ I. Let now consider 1-forms of connections which generate the standard basis of
contact forms

ωA = duA −HA
µ

(
x, v, v

1
;u

)
dxµ, (µ = 0, . . . , n− 1, A = 1, . . . ,m) . (3)

Let

xµ = yµ, (µ = 0, . . . , n− 1).
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The differential prolongation of (3) gives us such a system of contact forms:

ωA
µ1

= duA
µ1

−HA
µ1µ

(
x, v, v

1
, v
2
;u, u

1

)
dxµ, . . . ,

ωA
µ1...µk

= duA
µ1...µkµ −HA

µ1...µkµ

(
x, v, v

1
, v
2
;u, . . . , u

k

)
dxµ.

(4)

Let us construct the set of (n− 1)-forms

ΩB = βB
A ∧ ωA, (B = 1, . . . ,m), (5)

where βB
A are some (n− 2)-forms of the type

βB
A =

1
(n− 2)!

βB
Aµ1...µn−2

(x, u)dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµn−2 .

An extended ideal I
′

is obtained by adding forms (5) to I:

I
′

= {αA,ΩB}.
Demand ΩB be closed:

dΩB ⊂ I
′
. (6)

This condition is given by

dΩB = αAfB
A + θ ∧ ΩB, (7)

where θ is some 1-form such as, for example,

θ = θµdx
µ, θµ = const.

Equation (7) is the basic for determining the functions HA
µ1...µkµ from connections (3)

and for finding βB
A and fB

A coefficients . In [1], βB
Aµ1...µn−2

satisfy such commuting condi-
tions, from which it follows

I0A = −β0A
c Hc

2 + β2A
c Hc

1,

I1A = −β1A
c Hc

1 + β0A
c Hc

0,

I2A = −β2A
c Hc

0 + β1A
c Hc

2.

(8)

It makes us possible to write the equation Lq
2(x, v) = 0 in the form of the conservation law

∂µI
µA = 0. (9)

Hc
k have a special structure, which allows us to write

IµA = Xa(x, v)[vA] · fµa
(
x, u, u

1

)
, (µ = 0, 1, 2; a = 1, . . . , r

′
), (10)

and then obtain the incomplete Lie algebra

Xa(x, v) = Xc
a(x, v)∂vc . (11)

Additional conditions on Xa allow it to become a complete Lie algebra.
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2. In the space E1(y, v), let an invariance Lie algebra of infinitesimal operators for the
equation Lq

2(x, v) = 0 be given:

Xa = ξµ
a (y, v)∂µ+ηB

a (y, v)∂vB , [Xa, Xb] = λc
abXc, (a = 1, . . . , r; B = 1, . . . ,m)(12)

and the projection ρ
′

: E1 → M
′

in a fibre bundle(E
′
,M

′
, ρ

′
) to each operator Xa set the

corresponding shorted operator

Xρ
′

a = ξµ
a (y, v)∂µ. (13)

Operator (12) acting in E1 is closely connected with an operator, which acts in M
′

[5]

Qa(y, v) = ξµ
a (y, v)∂µ − η∗a(y, v), η∗av

B = ηB
a . (14)

Determine now Qa-invariant solutions vinv of the equation Lq
1(y, v) = 0:

Qa(y, v)[vB] = ξµ
a (y, v)∂µv

B − ηB
a (y, v) = 0. (15)

If uA(x) 	= vB(y), then it follows from (15) that

Qa(y, v)[uA] = ΓA
ac

(
y, v, v

1
, . . .

)
uc 	= 0. (15a)

In more general case, it is
Qa(y, v)[uA] = ΓA

a

(
y, v, v

1
, . . . ;u

)
	= 0. (15b)

Let now consider 1-forms of connections (3)

ωA = (∂xµuA)dxµ −HA
µ

(
x, v, v

1
;u

)
dxµ. (16)

Interior product of ωA and the vector field

Wν = Dyνhµ∂xµ , (17)

where

‖W‖ = ‖Dh‖ ·
∥∥∥∥∂

1

∥∥∥∥ , ∂
1
≡ ‖∂0, ∂1, . . . , ∂n−1‖T ,

is obtained [2–4] in the form

Wν |ωA = Dyνhµ∂xµuA −Dyνhµ ·HA
µ . (18)

Here, we use the notation

Dyνhµ∂xµ |M = ∂yν |M ′ . (19)

So

Wν |ωA = ∂yνuA −Dyνhµ ·HA
µ . (20)

For each fixed ν, we multiply the scalar equation (20) by a 1-form dyν and then find the
sum

∼
ω

A
=

[
∂yνuA −Dyνhµ ·HA

µ

]
dyν = duA −Dyνhµ ·HA

µ · dyµ. (21)
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An interior product of the vector field (13) and the form (21) is

Xρ
′

a | ∼
ω

A
= ξν

a(y, v)∂yνuA − η∗a(y, v)uA − [
ξν
a(y, v)Dyνhµ ·HA

µ − η∗a(y, v)uA
]
. (22)

Let us set

ξν
a(y, v)Dyνhµ ·HA

µ − η∗a(y, v)uA ≡ ΓA
ac

(
y, v, v

1
, . . .

)
uc. (23)

In a more general case, we have

ξν
a(y, v)Dyνhµ ·HA

µ − η∗a(y, v)uA ≡ ΓA
a

(
y, v, v

1
, . . . , u

)
. (24)

In new notations, (22) will have the form

Xρ
′

a | ∼
ω

A
= Qa(y, v)[uA] − ΓA

a

(
y, v, v

1
, . . . , u

)
. (25)

When (25) is equal to zero, it determines a linear connection along the vector field Xρ
′

a .

We calculate now the exterior differential of scalar (25) and mark a result as
∼
ω

A
. The

interior product of this form and the vector field Xρ
′

a is

Xρ
′

b | ∼
ω

A
= ξµ

b (y, v)∂yµ

(
Xρ

′
a | ∼

ω
A
)

= ξµ
b (y, v)∂yµ(Qa[uA]) − ξµ

b (y, v)∂yµΓA
a =

=
(
ξµ
b (y, v)∂yµ − ηb

)
Qa[uA] + ηbQa[uA] − ξµ

b (y, v)∂yµΓA
a = QbQa[uA] −QbΓA

a ,(
Xρ

′

b | ∼
ω

A
= 0

)
.

(26)

With (26), let construct an equality

{[Qa, Qb] − λc
abQc}uA =

∼
Q[a ΓA

b] + ΓA
[a|uc|Γ

c
b] − λc

abΓ
A
c |L2(y,v)= 0. (27)

Here,
∼
Qa is the projection of the operator Qa on E

′
(not differentiate with respect to

u-variables)

ΓA
auc ≡ ∂ucΓA

a .

If the connection is linear, equation (27) is of the form

{Q[aΓA
b]c + ΓA

[a|K|Γ
K
b]c − λp

abΓ
A
pc}uc |Lq

2
= 0. (27a)

So the equation, which determines the reducing of a non-local transformation system to

the equation Lq
2(y, v) = 0, is (Xρ

′
a ≡ X

′
a):

∗

 L

X
′
[a

L
X

′
b]

uA − λc
ab L

X
′
c

uA


 ⊂ I

′
. (28)

Here, we use the notation [2, 3]:

L
X
u = X |du, Γ =

{
αc, X | ∼

ω
A
}
.
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The system of exterior differential equations αc = 0 gives us the representation of
Lq

2(y, v) = 0. Condition (28) shows that

∗
{
Xρ

′

[a |d(Xρ
′

b] | ∼
ω

A
) − λc

ab(X
ρ
′

c | ∼
ω

A
)
}
− fA

c · αc − ∗gAs
c

(
Xρ

′
s | ∼

ω
A
)

= 0. (28a)

∗ is the Hodge operator in R(0, n).
Equation (28a) can be represented in terms of covariant derivatives ∇Xa along the

vector field Xa. If connections are linear, the covariant and Lie derivatives are identical.
So, from

{Q[aΓA
b]c + ΓA

[a|K|Γ
K
b]c − λp

abΓ
A
pc}uc |Lq

2
= 0,

we obtain{[
∇Xρ

a
,∇Xρ

b

]
+ ∇[Xa,Xb]ρ −R(Xa, Xb)

}
uc = 0. (29)

Here,

R(Xa, Xb)uc = λp
abΓ

A
pcu

c (30)

is the tensor field of curvature of the corresponding connections [4].

Theorem. The non-local transformation represented by system (25) via integrability con-
ditions (27) for variables uA has, as a consequence, the equation Lq

2(y, v) = 0 when (28a)
is fulfiled.
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