One Geometric Model for Non-local Transformations

V.A. TYCHYNIN

Prydniprovsk State Academy of Civil Engineering and Architecture, 24a Chernyshevsky Str., Dnipropetrovsk, Ukraine

Abstract

A geometric formulation of an important class of non-local transformations is presented.

The contemporary geometric theory of Bäcklund transformations (BT) [1–4] is based on certain integrability conditions for a system of differential equations which are determine it. These equations are written in terms of connections in the submanifold of a jet-bundle foliation. One of the first nontrivial examples of BT in three dimensions was described in paper [1]. In this paper, a geometric formulation of an important class of non-local transformations is presented. The generalization is obtained due to the use of non-local transformations of dependent variables and integrability conditions of a more general type.

1. In the fibered submanifold (E^j, M', ρ') with the k-jet bundle $J^1(M'N')$, we set an equation of order $t = 2 \le l$:

We use here such notations:

$$\partial_{\mu}u = \frac{\partial u}{\partial x_{\mu}}, \quad \{x_{\mu}\} = (x_0, x_1, \dots, x_{n-1}).$$

Let now equation (1) be written in the form of n-th order exterior differential forms (n-forms)

$$\alpha^{c} = \frac{1}{n!} \alpha^{c}_{\mu_{0} \dots \mu_{n-1}}(y, v) dy^{\mu_{0}} \wedge dy^{\mu_{1}} \wedge \dots \wedge dy^{\mu_{n-1}}, \quad (c = 1, \dots, r).$$
 (2)

When this system of forms α^c is equal to zero, then (1) is fulfiled. So, the system of $\alpha^c = 0$ forms generates an ideal $I = \{\alpha^c\}$. The condition for system (2) to be closed is $d\alpha^c \subset I$. Let now consider 1-forms of connections which generate the standard basis of contact forms

$$\omega^{A} = du^{A} - H_{\mu}^{A} \left(x, v, v; u \right) dx^{\mu}, \qquad (\mu = 0, \dots, n - 1, A = 1, \dots, m).$$
 (3)

Let

$$x^{\mu} = y^{\mu}, \qquad (\mu = 0, \dots, n-1).$$

V. Tychynin

The differential prolongation of (3) gives us such a system of contact forms:

$$\omega_{\mu_{1}}^{A} = du_{\mu_{1}}^{A} - H_{\mu_{1}\mu}^{A} \left(x, v, v, v, v; u, u \right) dx^{\mu}, \dots,$$

$$\omega_{\mu_{1}\dots\mu_{k}}^{A} = du_{\mu_{1}\dots\mu_{k}\mu}^{A} - H_{\mu_{1}\dots\mu_{k}\mu}^{A} \left(x, v, v, v; u, \dots, u \right) dx^{\mu}.$$

$$(4)$$

Let us construct the set of (n-1)-forms

$$\Omega^B = \beta_A^B \wedge \omega^A, \quad (B = 1, \dots, m), \tag{5}$$

where β_A^B are some (n-2)-forms of the type

$$\beta_A^B = \frac{1}{(n-2)!} \beta_{A\mu_1...\mu_{n-2}}^B(x, u) dx^{\mu_1} \wedge dx^{\mu_2} \wedge \ldots \wedge dx^{\mu_{n-2}}.$$

An extended ideal I' is obtained by adding forms (5) to I:

$$I^{'} = \{\alpha^A, \Omega^B\}.$$

Demand Ω^B be closed:

$$d\Omega^{B} \subset I'$$
. (6)

This condition is given by

$$d\Omega^B = \alpha^A f_A^B + \theta \wedge \Omega^B, \tag{7}$$

where θ is some 1-form such as, for example,

$$\theta = \theta_{\mu} dx^{\mu}, \qquad \theta_{\mu} = \text{const.}$$

Equation (7) is the basic for determining the functions $H^A_{\mu_1...\mu_k\mu}$ from connections (3) and for finding β^B_A and f^B_A coefficients . In [1], $\beta^B_{A\mu_1...\mu_{n-2}}$ satisfy such commuting conditions, from which it follows

$$I^{0A} = -\beta_c^{0A} H_2^c + \beta_c^{2A} H_1^c,$$

$$I^{1A} = -\beta_c^{1A} H_1^c + \beta_c^{0A} H_0^c,$$

$$I^{2A} = -\beta_c^{2A} H_0^c + \beta_c^{1A} H_2^c.$$
(8)

It makes us possible to write the equation $L_2^q(x,v)=0$ in the form of the conservation law

$$\partial_{\mu}I^{\mu A} = 0. \tag{9}$$

 H_k^c have a special structure, which allows us to write

$$I^{\mu A} = X_a(x, v)[v^A] \cdot f^{\mu a}\left(x, u, \frac{u}{1}\right), \qquad (\mu = 0, 1, 2; \ a = 1, \dots, r'), \tag{10}$$

and then obtain the incomplete Lie algebra

$$X_a(x,v) = X_a^c(x,v)\partial_{v^c}. (11)$$

Additional conditions on X_a allow it to become a complete Lie algebra.

2. In the space $E^1(y,v)$, let an invariance Lie algebra of infinitesimal operators for the equation $L_2^q(x,v)=0$ be given:

$$X_a = \xi_a^{\mu}(y, v)\partial_{\mu} + \eta_a^B(y, v)\partial_{v^B}, \quad [X_a, X_b] = \lambda_{ab}^c X_c, \ (a = 1, \dots, r; \ B = 1, \dots, m)(12)$$

and the projection $\rho': E^1 \to M'$ in a fibre bundle (E', M', ρ') to each operator X_a set the corresponding shorted operator

$$X_a^{\rho'} = \xi_a^{\mu}(y, v)\partial_{\mu}. \tag{13}$$

Operator (12) acting in E^1 is closely connected with an operator, which acts in M' [5]

$$Q_a(y,v) = \xi_a^{\mu}(y,v)\partial_{\mu} - \eta_a^*(y,v), \quad \eta_a^* v^B = \eta_a^B.$$
(14)

Determine now Q_a -invariant solutions v^{inv} of the equation $L_1^q(y,v)=0$:

$$Q_a(y,v)[v^B] = \xi_a^{\mu}(y,v)\partial_{\mu}v^B - \eta_a^B(y,v) = 0.$$
(15)

If $u^A(x) \neq v^B(y)$, then it follows from (15) that

$$Q_a(y,v)[u^A] = \Gamma_{ac}^A \left(y,v,v,\dots\right) u^c \neq 0.$$
(15a)

In more general case, it is

$$Q_a(y,v)[u^A] = \Gamma_a^A \left(y, v, v, \dots; u \right) \neq 0. \tag{15b}$$

Let now consider 1-forms of connections (3)

$$\omega^{A} = (\partial_{x^{\mu}} u^{A}) dx^{\mu} - H_{\mu}^{A} \left(x, v, v; u \right) dx^{\mu}. \tag{16}$$

Interior product of ω^A and the vector field

$$W_{\nu} = D_{\nu} h^{\mu} \partial_{x^{\mu}}, \tag{17}$$

where

$$||W|| = ||Dh|| \cdot ||\partial_1||, \qquad \partial_1 \equiv ||\partial_0, \partial_1, \dots, \partial_{n-1}||^T,$$

is obtained [2–4] in the form

$$W_{\nu} = |\omega^A = D_{y^{\nu}} h^{\mu} \partial_{x^{\mu}} u^A - D_{y^{\nu}} h^{\mu} \cdot H_{\mu}^A. \tag{18}$$

Here, we use the notation

$$D_{y^{\nu}}h^{\mu}\partial_{x^{\mu}}|_{M} = \partial_{y^{\nu}}|_{M'}. \tag{19}$$

So

$$W_{\nu} = \partial_{y^{\nu}} u^A - D_{y^{\nu}} h^{\mu} \cdot H^A_{\mu}. \tag{20}$$

For each fixed ν , we multiply the scalar equation (20) by a 1-form dy^{ν} and then find the sum

$$\overset{\sim}{\omega}^{A} = \left[\partial_{y^{\nu}} u^{A} - D_{y^{\nu}} h^{\mu} \cdot H_{\mu}^{A} \right] dy^{\nu} = du^{A} - D_{y^{\nu}} h^{\mu} \cdot H_{\mu}^{A} \cdot dy^{\mu}. \tag{21}$$

V. Tychynin

An interior product of the vector field (13) and the form (21) is

$$X_a^{\rho'} = \left[\stackrel{\sim}{\omega}^A = \xi_a^{\nu}(y, v) \partial_{y^{\nu}} u^A - \eta_a^*(y, v) u^A - \left[\xi_a^{\nu}(y, v) D_{y^{\nu}} h^{\mu} \cdot H_u^A - \eta_a^*(y, v) u^A \right] \right]. \tag{22}$$

Let us set

$$\xi_a^{\nu}(y,v)D_{y^{\nu}}h^{\mu} \cdot H_{\mu}^A - \eta_a^*(y,v)u^A \equiv \Gamma_{ac}^A\left(y,v,v,v,\ldots\right)u^c.$$
 (23)

In a more general case, we have

$$\xi_a^{\nu}(y,v)D_{y^{\nu}}h^{\mu} \cdot H_{\mu}^A - \eta_a^*(y,v)u^A \equiv \Gamma_a^A\left(y,v,v,v,\dots,u\right). \tag{24}$$

In new notations, (22) will have the form

$$X_a^{\rho'} \mid \widetilde{\omega}^A = Q_a(y, v)[u^A] - \Gamma_a^A \left(y, v, v, \dots, u \right). \tag{25}$$

When (25) is equal to zero, it determines a linear connection along the vector field $X_a^{\rho'}$. We calculate now the exterior differential of scalar (25) and mark a result as $\overset{\sim}{\omega}^A$. The interior product of this form and the vector field $X_a^{\rho'}$ is

$$X_{b}^{\rho'} = \widetilde{\omega}^{A} = \xi_{b}^{\mu}(y, v) \partial_{y^{\mu}} \left(X_{a}^{\rho'} = \widetilde{\omega}^{A} \right) = \xi_{b}^{\mu}(y, v) \partial_{y^{\mu}} (Q_{a}[u^{A}]) - \xi_{b}^{\mu}(y, v) \partial_{y^{\mu}} \Gamma_{a}^{A} =$$

$$= \left(\xi_{b}^{\mu}(y, v) \partial_{y^{\mu}} - \eta_{b} \right) Q_{a}[u^{A}] + \eta_{b} Q_{a}[u^{A}] - \xi_{b}^{\mu}(y, v) \partial_{y^{\mu}} \Gamma_{a}^{A} = Q_{b} Q_{a}[u^{A}] - Q_{b} \Gamma_{a}^{A}, \quad (26)$$

$$\left(X_{b}^{\rho'} = \widetilde{\omega}^{A} = 0 \right).$$

With (26), let construct an equality

$$\{[Q_a, Q_b] - \lambda_{ab}^c Q_c\} u^A = \stackrel{\sim}{Q}_{[a} \Gamma_{b]}^A + \Gamma_{[a|u^c|}^A \Gamma_{b]}^c - \lambda_{ab}^c \Gamma_c^A |_{L_2(y,v)} = 0.$$
 (27)

Here, \tilde{Q}_a is the projection of the operator Q_a on $E^{'}$ (not differentiate with respect to u-variables)

$$\Gamma_{au^c}^A \equiv \partial_{u^c} \Gamma_a^A.$$

If the connection is linear, equation (27) is of the form

$$\{Q_{[a}\Gamma_{b]c}^{A} + \Gamma_{[a|K|}^{A}\Gamma_{b]c}^{K} - \lambda_{ab}^{p}\Gamma_{pc}^{A}\}u^{c}|_{L_{2}^{q}} = 0.$$
(27a)

So the equation, which determines the reducing of a non-local transformation system to the equation $L_2^q(y,v)=0$, is $(X_a^{\rho'}\equiv X_a^{\prime})$:

$$* \left\{ \underset{X'_{[a}X'_{b]}}{L} u^A - \lambda_{ab}^c \underset{X'_{c}}{L} u^A \right\} \subset I'. \tag{28}$$

Here, we use the notation [2, 3]:

$$\underset{X}{L}u=X\lrcorner du, \qquad \Gamma=\left\{ \alpha^{c},X\lrcorner\mid\stackrel{\sim}{\omega}^{A}
ight\} .$$

The system of exterior differential equations $\alpha^c = 0$ gives us the representation of $L_2^q(y, v) = 0$. Condition (28) shows that

$$*\left\{X_{[a}^{\rho'} - |d(X_{b]}^{\rho'} - |\widetilde{\omega}^{A}) - \lambda_{ab}^{c}(X_{c}^{\rho'} - |\widetilde{\omega}^{A})\right\} - f_{c}^{A} \cdot \alpha^{c} - *g_{c}^{As}\left(X_{s}^{\rho'} - |\widetilde{\omega}^{A}\right) = 0.$$
 (28a)

* is the Hodge operator in R(0, n).

Equation (28a) can be represented in terms of covariant derivatives ∇_{X_a} along the vector field X_a . If connections are linear, the covariant and Lie derivatives are identical. So, from

$$\{Q_{[a}\Gamma^{A}_{b]c}+\Gamma^{A}_{[a|K|}\Gamma^{K}_{b]c}-\lambda^{p}_{ab}\Gamma^{A}_{pc}\}u^{c}\mid_{L^{q}_{2}}=0,$$

we obtain

$$\left\{ \left[\nabla_{X_a^{\rho}}, \nabla_{X_b^{\rho}} \right] + \nabla_{[X_a, X_b]^{\rho}} - R(X_a, X_b) \right\} u^c = 0.$$

$$(29)$$

Here,

$$R(X_a, X_b)u^c = \lambda_{ab}^p \Gamma_{pc}^A u^c \tag{30}$$

is the tensor field of curvature of the corresponding connections [4].

Theorem. The non-local transformation represented by system (25) via integrability conditions (27) for variables u^A has, as a consequence, the equation $L_2^q(y,v) = 0$ when (28a) is fulfilled.

References

- [1] Chowdhury A.R. and Ahmad S., On the prolongation approach in three dimensions for the conservation laws and Lax pair of the Benjamin-Ono equation, *J. Math. Phys.*, 1987, V.8, 1697–1699.
- [2] Pirani F., Robinson D. and Shadwick W.F., Jet Bundle Formulation of Bäcklund Transformations to Nonlinear Evolution Equations, Dordrecht, D. Reidel Publ. Co., 1979.
- [3] Rogers C. and Shadwick W.F., Bäcklund Transformations and Their Applications, N.Y., Academic Press, 1982.
- [4] Hermann R.E., Cartan's geometric theory of partial differential equations, Advances in Math., 1965, V.1, 265–317.
- [5] Fushchych W.I., Shtelen V.M. and Serov N.I., Symmetry Analyse and Exact Solutions of Nonlinear Equations of Mathematical Physics, Kyiv, Naukova Dumka, 1989.