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Abstract

The Maxwell equations with gradient-like sources are proved to be invariant with
respect to both bosonic and fermionic representations of the Poincar’e group and to be
the kind of Maxwell equations with maximally symmetric properties. Nonlocal vector
and tensor-scalar representations of the conformal group are found, which generate
the transformations leaving the Maxwell equations with gradient-like sources being
invariant.

1. Introduction

The relationship between the massless Dirac equation and the Maxwell equations attracts
the interest of investigators [1–21] since the creation of quantum mechanics. In [8, 11],
one can find the origin of the studies of the most interesting case where mass is nonzero
and the interaction in the Dirac equation is nonzero too. As a consequence, the hydrogen
atom can be described [11, 19–21] on the basis of the Maxwell equations. Starting from
[10], the Maxwell equations with gradient-like sources have appeared in consideration.
From our point of view, it is the most interesting kind of the Maxwell equations especially
in studying the relationship with the massless Dirac equation. Below we investigate the
symmetry properties of this kind of the Maxwell equations.

2. The Maxwell equations with gradient-like sources

Let us choose the γµ matrices in the massless Dirac equation

iγµ∂µΨ(x) = 0; x ≡ (xµ) ∈ R4, Ψ ≡ (Ψµ), ∂µ ≡ ∂

∂xµ
, µ = 0, 1, 2, 3, (1)

obeying the Clifford-Dirac algebra commutation relations

γµγν + γνγµ = 2gµν , γµ† = gµνγν , diag g = (1,−1,−1,−1), (2)

in the Pauli-Dirac representation (shortly: PD-representation):

γ0 =
∣∣∣∣ 1 0

0 −1

∣∣∣∣ , γk =
∣∣∣∣ 0 σk

−σk 0

∣∣∣∣ ;

σ1 =
∣∣∣∣ 0 1

1 0

∣∣∣∣ , σ2 =
∣∣∣∣ 0 −i
i 0

∣∣∣∣ , σ3 =
∣∣∣∣ 1 0

0 −1

∣∣∣∣ .
(3)
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Note first of all that after the substitution of ψ by the following column

ψ = column
∣∣E3 + iH0, E1 + iE2, iH3 + E0, −H2 + iH1

∣∣ , (4)

the Dirac equation (1) is transformed into equations for the system of electromagnetic(
�E, �H

)
and scalar

(
E0, H0

)
fields:

∂0
�E = curl �H − grad E0, ∂0

�H = −curl �E − grad H0,

div �E = −∂0E
0, div �H = −∂0H

0
(5)

(three other versions of the treatment of these equations are given in [16], the complete
set of linear homogeneous connections between the Maxwell and the Dirac equations is
given in [14, 17, 18]). In the notations (Eµ) ≡

(
E0, �E

)
, (Hµ) ≡

(
H0, �H

)
, Eqs.(5) have a

manifestly covariant form

∂µEν − ∂νEµ + εµνρσ∂
ρHσ = 0, ∂µE

µ = 0, ∂µH
µ = 0. (6)

In terms of the complex 4-component object

E = column
∣∣E1 − iH1, E2 − iH2, E3 − iH3, E0 − iH0

∣∣ , (7)

Eqs.(5) have the form

∂µEν − ∂νEµ + iεµνρσ∂
ρEσ = 0, ∂µEµ = 0. (8)

The free Maxwell equations are obtained from Eqs. (5), (6), (8) in the case of E0 = H0 = 0.
The unitary operator V

V ≡

∣∣∣∣∣∣∣∣
0 C+ 0 C−
0 iC− 0 iC+

C+ 0 C− 0
C− 0 C+ 0

∣∣∣∣∣∣∣∣ , V † ≡

∣∣∣∣∣∣∣∣
0 0 C+ C−
C+ iC+ 0 0
0 0 C− C+

C− iC− 0 0

∣∣∣∣∣∣∣∣ ;

C± ≡ C ± 1
2

; V V † = V †V = 1.

(9)

(in the space where the Clifford-Dirac algebra is defined as a real one, this operator is
unitary) transforms the ψ from (4) into the object E (7):

ψ ≡

∣∣∣∣∣∣∣∣
ψ1

ψ2

ψ3

ψ4

∣∣∣∣∣∣∣∣ =
1
2

∣∣∣∣∣∣∣∣
E3 + E∗3 − E0 + E∗0

E1 + E∗1 + iE2 + iE∗2

E0 + E∗0 − E3 + E∗3

−iE2 + iE∗2 − E1 + E∗1

∣∣∣∣∣∣∣∣ ≡ V −1E , E ≡

∣∣∣∣∣∣∣∣
E1

E2

E3

E0

∣∣∣∣∣∣∣∣ = V ψ, (10)

and the γµ matrices (3) in the PD-representation into the bosonic representation (shortly:
B-representation)

γµ −→ γ̃µ ≡ V γµV †. (11)

Here C is the operator of complex conjugation: CΨ = Ψ∗. The unitarity of the operator
V can be proved by means of relations

Ca = (aC)∗ = a∗C, (AC)† = CA† = ATC (12)

for an arbitrary complex number a and a matrix A.
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Let us write down the explicit form of the Clifford-Dirac algebra generators in the
B-representation

γ̃0 =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

∣∣∣∣∣∣∣∣C, γ̃1 =

∣∣∣∣∣∣∣∣
0 0 0 1
0 0 −i 0
0 i 0 0
−1 0 0 0

∣∣∣∣∣∣∣∣C,

γ̃2 =

∣∣∣∣∣∣∣∣
0 0 i 0
0 0 0 1
−i 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣C, γ̃3 =

∣∣∣∣∣∣∣∣
0 −i 0 0
i 0 0 0
0 0 0 1
0 0 −1 0

∣∣∣∣∣∣∣∣C.
(13)

In the B-representation, the complex number i is represented by the following matrix
operator

ĩ = V iV † = iΓ, Γ ≡

∣∣∣∣∣∣∣∣
0 i 0 0
−i 0 0 0
0 0 0 −1
0 0 −1 0

∣∣∣∣∣∣∣∣ = Γ† = Γ−1, Γ2 = 1. (14)

The above-mentioned facts mean that the Maxwell equations (5), (6), (8) can be rewrit-
ten in the Dirac-like form

ĩγ̃µ∂µE(x) = 0, E = V ΨIII . (15)

Even from the explicit form of equations (5), (6), (8), (15), one can suppose that Eqs.(6)
and (8) are equations for a vector field, Eqs.(5) are those for the system of tensor and
scalar field and Eqs.(15) are for a spinor field. From the electrodynamical point of view,
one can interpret Eqs.(5) as the Maxwell equations with fixed gradient-like sources. How-
ever, before going from assumptions to assertions, we must investigate the transformation
properties of the object E and symmetry properties of equations (5), (6), (8), (15). The
mathematically well-defined assertion that substitutions (4) transform the Dirac equation
into the Maxwell equations (5) for the electromagnetic and scalar fields is impossible with-
out the proof that the object E can be transformed as electromagnetic and scalar fields,
i.e., we need the additional arguments in order to have the possibility to interpret the
real and imaginary parts of spinor components from (4) as the components of electromag-
netic and scalar fields – such arguments can be taken from the symmetry analysis of the
corresponding equations.

3. Symmetries

For the infinitesimal transformations and generators of the conformal group C(1, 3) ⊃ P ,
we use the notations:

f(x) → f
′
(x) i=

(
1 − aρ∂ρ − 1

2
ωρσ ĵρσ − κd̂− bρk̂ρ

)
f(x) (16)

∂ρ ≡ ∂

∂xρ
, ĵρσ = Mρσ + Sρσ, d̂ = d + τ = xµ∂µ + τ,

k̂ρ = kρ + 2Sρσx
σ − 2τxρ ≡ 2xρd̂− x2∂ρ + 2Sρσx

σ,

(17)
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The generators (17) obey the commutation relations

[∂µ, ∂ν ] = 0,
[
∂µ, ĵνσ

]
= gµν∂σ − gµσ∂ν , (a)[

ĵµν , ĵλσ

]
= −gµλĵνσ − gνσ ĵµλ + gµσ ĵνλ + gνλĵµσ, (b)[

∂µ, d̂
]

= ∂µ,
[
∂ρ, k̂σ

]
= 2(gρσd̂− ĵρσ),

[
∂µ, ĵµσ

]
= 0,[∧

kρ,
∧
jσν

]
= gρσ

∧
kν −gρν

∧
kσ,

[∧
d,

∧
kρ

]
=

∧
kρ,

[∧
kρ,

∧
kσ

]
= 0.

(18)

with an arbitrary number τ (the conformal number) and Sρσ matrices being the generators
of the 4-dimensional representation of the Lorentz group SL(2, C), e.g., for symmetries
of the Dirac (m=0) equation, the conformal number τ = 3/2 and 4×4 Sρσ matrices are
chosen in the form

SI
ρσ ≡ −1

4
[γρ, γσ] ∈ D

(
0,

1
2

)
⊕

(
1
2
, 0

)
, (19)

where SI
ρσ are generators of the spinor representation D

(
0, 1

2

) ⊕ (
1
2 , 0

)
of the SL(2, C)

group. Let us define the following six operators from the Pauli-Gursey-Ibragimov sym-
metry [22]:

SII
ρσ = −SII

σρ :




SII
01 =

i

2
γ2C, SII

02 = −1
2
γ2C, SII

03 = − i

2
γ4,

SII
12 = − i

2
, SII

31 = −1
2
γ2γ4C, SII

23 =
i

2
γ2γ4C


 . (20)

It is easy to verify that operators (20) obey same commutation relations as generators (19)
and, as a consequence, they form an another realization of the same spinor representation
D

(
0, 1

2

) ⊕ (
1
2 , 0

)
of the SL(2, C) group. But, in contradiction to operators (19), they are

themselves (without any differential angular momentum part) the symmetry operators of
the massless Dirac equation (1), i.e., they leave this equation being invariant.

We prefer to use the Dirac-like form (15) of the Maxwell equations with gradient-
like sources for the symmetry analysis. The operator equality V Q̂ψV

† = qE allows one
to find the connections between the symmetries of the Dirac equation (1) and those of
equation (15) for the field E = (Eµ). It was shown in [15, 16] that the massless Dirac
equation is invariant (in addition to the standard spinor representation) with respect
to two bosonic representations of Poincaré group being generated by the D

(
1
2 ,

1
2

)
and

D (1, 0) ⊕ (0, 0) representations of the Lorentz group (for the 8-component form of the
Dirac equation, the similar representations of Poincar’e group being generated by the
reducible D

(
1
2 ,

1
2

)⊕(
1
2 ,

1
2

)
and D (1, 0)⊕(0, 0)⊕(0, 0)⊕(0, 1) representations of the Lorentz

group were found in [13]). Of course, Eqs.(15) for the field E (the Maxwell equations with
gradient-like sources) are also invariant with respect to these three different representations
of the Poincar’e group that is evident due to the unitary connection (9) between the fields
ψ and E . Let us prove this fact directly.

Let us write down the explicit form of the SI
ρσ and SII

ρσ operators (19) and (20) in the
B-representation

S̃I
ρσ = −1

4
[γ̃ρ, γ̃σ] : S̃I

jk = −iεjklS̃I
0l, S̃I

0l = −1
2
γ̃0l, (21)



Fermionic Symmetries of the Maxwell Equations with Gradient-like Sources 479

S̃II
ρσ ≡ V SII

ρσV
† : S̃II

jk = −iεjklS̃II
0l , S̃II

01 =
1
2

∣∣∣∣∣∣∣∣
0 0 0 −1
0 0 i 0
0 −i 0 0
−1 0 0 0

∣∣∣∣∣∣∣∣ ,

S̃II
02 =

1
2

∣∣∣∣∣∣∣∣
0 0 −i 0
0 0 0 −1
i 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣ , S̃II
03 =

1
2

∣∣∣∣∣∣∣∣
0 i 0 0
−i 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣ ,
(22)

We consider in addition to the sets of generators (19), (20) the following two sets of
matrices Sρσ:

SIII
0k = SI

0k − SII
0k , SIII

mn = SI
mn + SII

mn, (23)

SIV
ρσ = SI

ρσ + SII
ρσ. (24)

Theorem 1. The commutation relations (18b) of the Lorentz group are valid for each
set SI−IV

ρσ of Sρσ matrices. Sets (19), (20) (or (21), (22)) are the generators of the
same (spinor) representation D

(
0, 1

2

) ⊕ (
1
2 , 0

)
of the SL(2, C) group, set (23) consists of

generators of the D (0, 1) ⊕ (0, 0) representation and set (24) consists of the generators of
the irreducible vector D

(
1
2 ,

1
2

)
representation of the same group.

Proof. The fact that matrices (19) are the generators of the spinor representation of
the SL(2, C) group is well known (for matrices (21) this fact is a consequence of the
operator equality V Q̂ψV

† = qE which unitarily connects operators in the PD- and B-
representations). It is better to fulfil the proof of nontrivial assertions of Theorem 1 in
the B-representation where their validity can be seen directly from the explicit form of the
operators Sρσ even without the Casimir operators calculations. In fact, using the explicit
forms of matrices (21), (22), we find

S̃II
ρσ = CS̃I

ρσC ⇐⇒ S̃I
ρσ = CS̃II

ρσC, (25)

S̃IV
01 =

∣∣∣∣∣∣∣∣
0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0

∣∣∣∣∣∣∣∣ , S̃IV
02 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 −1
0 0 0 0
0 −1 0 0

∣∣∣∣∣∣∣∣ , S̃IV
03 =

∣∣∣∣∣∣∣∣
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

∣∣∣∣∣∣∣∣ , (26)

S̃IV
mn =

∣∣∣∣ smn 0
0 0

∣∣∣∣ = S̃III
mn ; S̃III

0k =
∣∣∣∣ s0k 0

0 0

∣∣∣∣ , (27)

where

s0k =
i

2
εkmnsmn = −sk0, s12 =

∣∣∣∣∣∣
0 −1 0
1 0 0
0 0 0

∣∣∣∣∣∣ ,
s23 =

∣∣∣∣∣∣
0 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣ , s31 =

∣∣∣∣∣∣
0 0 1
0 0 0
−1 0 0

∣∣∣∣∣∣ .
(28)
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The unitarity of the C operator in relations (25), the direct calculation of correspond-
ings commutators and the Casimir operators S± of the SL(2, C) group

S2
± =

1
2

(τ1 ± iτ2), τ1 ≡ −1
2
SµνSµν , τ2 ≡ −1

2
εµνρσSµνSρσ (29)

accomplish the proof of the theorem.
It is interesting to mark the following. Despite the fact that the matrices S̃I

ρσ and S̃II
ρσ

are unitarily interconnected according to formulae (25), which in the PD-representation
have the form

SI
ρσ =

∧
C SII

ρσ

∧
C,

∧
C≡ V †CV =

∣∣∣∣∣∣∣∣
C 0 0 0
0 1 0 0
0 0 C 0
0 0 0 1

∣∣∣∣∣∣∣∣ , (30)

the matrices S̃I
ρσ (19) (or (21)), as well as the matrices (23), (24) (or (26), (27)), in

contradiction to the matrix operators (20) (or (22)) being taken themselves, are not the
invariance transformations of equation (1) (or (15)). It is evident because the C operator
does not commute (or anticommute) with the Diracian γµ∂µ. Nevertheless, due to the
validity of relations[

SII
µν , S

I,III,IV
ρσ

]
= 0, µ, ν, ρ, σ = (0, 1, 2, 3), (31)

not only the generators (∂, ĵI) of the well-known spinor representation PS of the Poincar’e
group, but also the following generators

jIII,IV
ρσ = Mρσ + SIII,IV

ρσ . (32)

are the transformations of invariance of equation (1) (or (15)). It means the validity of
the following assertion.
Theorem 2. The Maxwell equations with gradient-like sources are invariant with respect
to the three dif ferent local representations PS P T P V of the Poincar’e group P given by
the formula

Ψ(x) −→ Ψ
′
(x) = F I−III(ω)Ψ(Λ−1(x− a)), (33)

where

F I(ω) ∈ D
(
0, 1

2

) ⊕ (
1
2 , 0

)
, (P = PS),

F II(ω) ∈ D (0, 1) ⊕ (0, 0) , (P = P Ts),

F III(ω) ∈ D
(

1
2 ,

1
2

)
(P = P V ).

(34)

Proof of the theorem for equations (15) follows from Theorem 1 and the above-mentioned
consideration. It is only a small technical problem to obtain the explicit form of corre-
sponding symmetry operators for the form (5) of these equations, having their explicit
form for equations (15).

It is easy to construct the corresponding local C(1, 3) representations of the conformal
group, i.e., CS , CT and CV , but only one of them (the well-known local spinor repre-
sentation CS) gives the transformations of invariance of the massless Dirac equation and,
therefore, of the Maxwell equations with gradient-like sources.
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The simplest of Lie-Bäcklund symmetries are the transformations of invariance gener-
ated by the first-order differential operators with matrix coefficients. The operators of the
Maxwell and Dirac equations also belong to this class of operators. In order to complete
the present consideration, we shall recall briefly our result [14, 15].
Theorem 3. The 128-dimensional algebra A128, whose generators are

Qa = (∂, ĵI , d̂I , k̂I), Qb = (γ2C, iγ2C, γ2γ4C, iγ2γ4C, i, iγ4, γ4, I), (35)

where γ4 ≡ γ0γ1γ2γ3, and all their compositions QaQb, a = (1, 2, 3, ..., 15), b = (1, ..., 8),
is the simplest algebra of invariance of the Maxwell equations with gradient-like sources in
the class of f irst-order dif ferential operators with matrix coef f icients.
Proof. For the details of the proof via the symmetries of Eqs.(15) see [14, 15].

In the class of nonlocal operators, we are able to represent here a new result. In spite of
the fact that the above-mentioned local representations CT and CV are not the symmetries
of equation (15), the corresponding symmetries can be constructed in the class of nonlocal
operators.
Theorem 4. The Maxwell equations with gradient-like sources (15) (or (5)) are inva-
riant with respect to the representations C̃T , C̃V of the conformal group C(1, 3). The
corresponding generators are (∂, ĵIII,IV ) together with the following nonlocal operators

dIII,IV =
1
2

{
∂0, ∂k

∆
, jIII,IV

0k

}
,

kIII,IV
0 =

1
2

{
∂0

∆
, (jIII,IV

0k )2 +
1
2

}
, kIII,IV

m =
[
kIII,IV

0 , jIII,IV
0m

]
,

(36)

where ∆ = ∂2
k.

Proof. The validity of this theorem follows from the above-mentioned Theorem 2 and
Theorem 4 in [23].

4. Conclusions

We prove that the object E of Eqs.(8), (15) can be interpreted as either (i) the spinor field,
or (ii) the complex vector field, or (iii) the tensor-scalar field. Moreover, each of equations
(5), (6), (8), (15) can be interpreted as either (i) the Maxwell equations with an arbitrary
fixed gradient-like 4-current jµ = ∂µE0(x), being determined by a scalar function E0(x),
or (ii) the Dirac equation in the bosonic representation, or (iii) the Maxwell equations for
the tensor-scalar field, or (iV) the equations for the complex vector field.

Let us underline that the Maxwell equations with gradient-like sources (5), (6), (8), (15)
are the kind of Maxwell equations with maximally wide possible symmetry properties –
they have both Fermi and Bose symmetries and can describe both fermions and bosons,
see their corresponding quantization in [18].
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