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Abstract

Lie and conditional symmetries of nonlinear diffusion equations with convection term
are described. Examples of new ansätze and exact solutions are presented.

1. Introduction

In the present paper, we consider nonlinear diffusion equations with convection term of
the form

Ut = [A(U)Ux]x + B(U)Ux + C(U), (1)

where U = U(t, x) is the unknown function and A(U), B(U), C(U) are arbitrary smooth
functions. The indices t and x denote differentiating with respect to these variables.
Equation (1) generalizes a great number of the well-known nonlinear second-order evolu-
tion equations, describing various processes in physics, chemistry, biology (in paper [1],
one can find a wide list of references).

In the case A = 1, B = C = 0, the classical heat equation

Ut = Uxx (2)

follows from equation (1). S. Lie [2] was the first to calculate the maximal invariance
algebra (i.e., the Lie symmetry) of the linear heat equation (2). The algebra found is the
generalized Galilei algebra AG2(1.1) that generates the six-parameter group of time- and
space translations and Galilei, scale, and projective transformations (for details, see, e.g.,
[3, 4]).

In the case B = C = 0, the standard nonlinear heat equation

Ut = [A(U)Ux]x (3)

follows from equation (1). Lie symmetries of equation (3) were completely described by
Ovsyannikov [5]. It has been shown that equation (3) is invariant under a non-trivial
algebra of Lie symmetries only in the cases A = λ0 exp(mU) and A = λ0(U +α0)k, where
λ0,m, k, α0 are arbitrary constants.
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Finally, in the case B(U) = 0, we obtain the known nonlinear heat equation with a
source

Ut = [A(U)Ux]x + C(U). (4)

The Lie symmetry of equation (4) was completely described in [6].
An approach to finding a non-classical symmetry (conditional symmetry) of the linear

heat equation (2) was suggested in [7] (see also [8]). The conditional symmetry of nonlinear
heat equation (4) was studied in [9, 10].

In the present paper (section 2), the Lie symmetries of equation (1) are completely
described. In particular, such operators of invariance are found that are absent for equa-
tions (3) and (4).

In section 3, new operators of conditional symmetry of equations (1) and (4) are con-
structed. With the help of these operators, new ansätze and exact solutions for some
equations of the form (1) are found.

2. Lie symmetries of the nonlinear equation (1)

It is easily shown that equation (1) is reduced by the local substitution (see, e.g., [11])

U → U∗ =
∫

A(U)dU ≡ A0(U) (5)

to the form

U∗
xx = F0(U∗)U∗

t + F1(U∗)U∗
x + F2(U∗), (6)

where

F0 =
1

A(U)

∣∣∣U=A−1
0 (U∗) , F1 = −B(U)

A(U)

∣∣∣U=A−1
0 (U∗) , F2 = −C(U)

∣∣∣U=A−1
0 (U∗) (7)

and A−1
0 is the inverse function to A0(U). Hereinafter, the sign ∗ is omitted, i.e., the

equation

Uxx = F0(U)Ut + F1(U)Ux + F2(U) (8)

is considered.
Now let us formulate theorems which give complete information on local symmetry

properties of equation (8). Note that we do not consider the cases in which F1(U) = 0
since these cases have been studied in [6].

It is clear that equation (8) is invariant with respect to the trivial algebra

Pt =
∂

∂t
, Px =

∂

∂x
(9)

for arbitrary functions F0(U), F1(U), F2(U). Hereinafter, operators (9) are not listed since
they are common for all cases.

Theorem 1. The maximal algebra of invariance of equation (8) in the case F0 = 1 is the
Lie algebra with basic operators (9) and

a) D1 = 2mtPt + mxPx − UPU , if F1 = λ1U
m, F2 = λ2U

2m+1;
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b) G1 = exp (−λ2t)
(
Px − λ2

λ1
PU

)
, if F1 = λ1U, F2 = λ2U, λ2 �= 0;

c) G1 = tPx +
1
λ1

UPU , D2 = 2tPt + xPx − UPU ,

Π1 = t2Pt + txPx +
(

x

λ1
− tU

)
PU if F1 = λ1U, F2 = 0;

d) G1 = tPx +
1
λ1

UPU , if F1 = λ1 lnU, F2 = λ2U ;

e) G2 = exp(−λ3t)
(
Px − λ3

λ1
UPU

)
,

if F1 = λ1 lnU, F2 = λ2U + λ3U lnU, λ3 �= 0;

f) Y = exp
[(

λ2
1

4
− λ3

)
t +

λ1

2
x

]
UPU ,

if F1 = λ1 lnU, F2 = λ2U + λ3U lnU − λ2
1

4
U ln2 U,

where λ1 �= 0, λ2, λ3 and m �= 0 are arbitrary constants, PU =
∂

∂U
.

Theorem 2. The maximal algebra of invariance of equation (8) in the case F0 = exp(mU)
is the Lie algebra with basic operators (9) and

D = (2n−m)tPt + nxPx − PU

if F1 = λ1 exp(nU), F2 = λ2 exp(2nU), where λ1 �= 0, λ2,m and n �= 0 are arbitrary
constants.

Theorem 3. The maximal algebra of invariance of equation (8) in the case F0 = Uk,
k �= 0 is the Lie algebra with basic operators (9) and

a) D1 = (2m− k)tPt + mxPx − UPU ,

if F1 = λ1U
m, F2 = λ2U

2m+1, m �= 0,m �= k,m �= k/2;

b) T = exp(−λ3kt) (Pt − λ3UPU ), if F1 = α1, F2 = λ2U + λ3U
k+1;

c) X = exp(−α1kx)(Px + 2α1UPU ),

if F1 = λ1U
k/2 + (k + 4)α1, F2 = λ2U

k+1 − 2α1λ1U
k/2+1 + λ4U, k �= −4;

d) D2 = ktPt + UPU , X, if F1 = α1(k + 4), F2 = λ4U, k �= −4;

e) T, X, if F1 = α1(k + 4), F2 = λ4U + λ3U
k+1, k �= −4,

where α1 �= 0, λ1 �= 0, λ2, and λ3 �= 0 are arbitrary constants λ4 = −2α2
1(k + 2).

The proofs of Theorems 1, 2 and 3 are based on the classical Lie scheme (see,
e.g., [12, 13]) and here they are omitted. Note that these proofs are non-trivial because



Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations 447

equation (8) contains three arbitrary functions F0(U), F1(U), F2(U) (for details see our
recently published paper [14]).

Using Theorems 1–3 and [6], one can show that some nonliner convection equations of
the form (8) contain the operators G1, Y and X that are not invariance operators for any
nonlinear equation of the form (4).

In particular, it follows from Theorem 1 that the nonlinear convection equation

Ut = Uxx − λ1(lnU)Ux − λ2U

is invariant under the Galilei algebra with basic operators Pt, Px and G1, in which the
unit operator is absent. Note that the Burgers equation is also invariant under the Galilei
algebra (see Theorem 1, case (c)), which does not contain a unit operator. All second-
order equations, which are invariant with respect to the similar representation of the Galilei
algebra, were described in [3].

On the other hand, all nonlinear equations of the form (4) do not have the Galilei
symmetry [3]. The Galilei algebra of the linear heat equation contains the unit operator
I = U∂U and is essentially different from that of the Burgers equation. Nonlinear equa-
tions and systems of equations, preserving the Galilei algebra of the linear heat equation,
have been described in [4], [15], [16].

3. Conditional symmetries of the nonlinear equation (1)

In this section, we study the Q-conditional symmetry (see the definition of conditional
symmetry in [13]) of the nonlinear equation (8) if F1(U) �= 0.

Theorem 4. Equation (8) is Q-conditional invariant under the operator

Q = ξ0(t, x, U)Pt + ξ1(t, x, U)Px + η(t, x, U)PU

if the functions ξ0, ξ1, η satisfy the following equations:
case 1.


ξ0 = 1, ξ1

UU = 0, ηUU = 2ξ1
U (F1 − ξ1F0) + 2ξ1

xU ,

η(F1 − ξ1F0)U − (ξ1
t + 2ξ1ξ1

x − 3ξ1
Uη)F0 + ξ1

xF1 + 3ξ1
UF2 − 2ηxU + ξ1

xx = 0,

η(ηF0 + F2)U + (2ξ1
x − ηU )(ηF0 + F2) + ηtF0 + ηxF1 − ηxx = 0;

(10)

case 2.{
ξ0 = 0, ξ1 = 1, η(ηx + ηηU − ηF1 − F2)Ḟ0 =

= (ηxx + 2ηηxU + η2ηUU − η2Ḟ1 − ηxF1 − ηḞ2 + ηUF2)F0 + ηtF
2
0 .

(11)

The dot above F0, F1, F2 denotes differentiating with respect to the variable U .

One can prove this theorem using [13], §5.7 .
The systems of the nonlinear equations (10) and (11) are very complicated and we did

not construct their general solutions. A partial solution of equations (10) has the form

ξ1 = U + λ4, η = P3(U),

F1 = (U + λ4)F0 + 3λ3U + λ2, F2 = −P3(U)(F0 + λ3),
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where P3(U) = λ0 + λ1U + λ2U
2 + λ3U

3, λµ ∈ R, µ = 0, . . . , 4, F0(U) is an arbitrary
smooth function.

A partial solution of equation (11) is the following:

η =
1
t
H(U), F0 = λ0Ḣ, F1 = λ1Ḣ + λ0Ḣ

∫
dU

H(U)
, F2 = λ2HḢ,

where H = H(U) is an arbitrary smooth function. So, we obtain the following result: the
equation

Uxx = F0(U)[Ut + (U + λ4)Ux − P3(U)] + (3λ3U + λ2)Ux − λ3P3(U) (12)

is a Q-conditional invariant under the operator

Q = Pt + (U + λ4)Px + P3(U)PU (13)

and the equation

Uxx = Ḣ(U)
[
λ0Ut +

(
λ1 + λ0

∫
dU

H(U)

)
Ux + λ2H(U)

]
(14)

is a Q-conditional invariant under the Galilei operator

G = tPx + H(U)PU . (15)

Using operators (13) and (15), we find the ansätze∫
U + λ4

P3(U)
dU − x = ϕ(ω), ω =

∫
dU

P3(U)
− t; (16)

∫
dU

H(U)
= ϕ(t) +

x

t
. (17)

After the substitution of ansätze (16) and (17) into (12) and (14), some ODEs are obtained
that can be solved. Having solutions of these ODEs and using ansätze (16) and (17), we
obtain the exact solution∫

dU

P3(U)
−

∫
dτ

P3(τ)
= t,

∫
U + λ4

P3(U)
dU −

∫
τ + λ4

P3(τ)
dτ = x (18)

of equation (12) in the parametrical form, and the solution∫
dU

H(U)
=

x

t
+

1
λ0

(
1
t
ln t− λ1 − 1

2
λ2t

)
(19)

of equation (14).
Finally, note that operators of conditional symmerty give a possibility to construct

ansätze and solutions of PDEs that can not be obtained by the Lie method. A construction
of new ansätze and solutions of other types will be considered in the next paper.
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