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Abstract
The symmetry reduction of the equation u0+∇

[
u− 4

5∇u
]
= 0 to ordinary differential

equations with respect to all subalgebras of rank three of the algebra AẼ (1)⊕AC (3)
is carried out. New invariant solutions are constructed for this equation.

1 Introduction

This paper is concerned with some invariant solutions to the three-dimensional nonlinear
diffusion equation

∂u

∂x0
+∇

[
u−

4
5∇u

]
= 0. (1)

Its symmetry properties are know [1, 2]. The maximal Lie point symmetry algebra F of
equation (1) has the basis

P0 =
∂

∂x0
, Pa = − ∂

∂xa
, Jab = xa

∂

∂xb
− xb

∂

∂xa
,

D1 = x0
∂

∂x0
+

5
4
u
∂

∂u
, D2 =

3∑
a=1

xa
∂

∂xa
− 5

2
u
∂

∂u
,

Ka =
(
2x2

a − �x2
) ∂

∂xa
+ 2

∑
b �=a

xaxb
∂

∂xb
− 5xau

∂

∂u

with a, b = 1, 2, 3. It is easy to see that F = AẼ(1)⊕ AC(3), where AẼ(1) = 〈P0, D1〉 is
an extended Euclidean algebra and AC(3) = 〈Pa,Ka, Jab, D2 : a, b = 1, 2, 3〉 is a conformal
algebra. If we make the transformation u = v5, we obtain the equation

∂v

∂x0
+ v−4�v = 0. (2)

Clearly, we see that

5u
∂

∂u
= v

∂

∂v
.

In the present article, the symmetry reduction of equation (2) is carried out with respect
to all subalgebras of rank three of the algebra F , up to conjugacy with respect to the group
of inner automorphisms. Some exact solutions of equation (1) are obtained by means of
this reduction (for the concepts and results used here, see also [3, 4]).
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2 Classif ication of subalgebras of the invariance algebra

If v = v(x1, x2, x3) is a solution of equation (2), then v is a solution of the Laplace equation
�v = 0. In this connection, let us restrict ourselves to those subalgebras of the algebra F
that do not contain P0. Among subalgebras possessing the same invariants, there exists a
subalgebra containing all the other subalgebras. We call it I-maximal.

Theorem 1 Up to the conjugation under to the group of inner automorphisms, the algebra
F has 18 I-maximal subalgebras of rank three which do not contain P0:

L1 = 〈P1, P2, P3, J12, J13, J23〉, L2 = 〈P0 − P1, P2, P3, J23〉,

L3 = 〈P2, P3, J23, D1 + αD2〉 (α ∈ R), L4 = 〈P0 − P1, P3, D1 +D2〉,

L5 = 〈P3, J12, D1 + αD2〉 (α ∈ R), L6 = 〈P0 − P3, J12, D1 +D2〉,

L7 = 〈P3, J12 + αP0, D2 + βP0〉 (α = 1, β ∈ R or α = 0 and β = 0,±1),

L8 = 〈P2, P3, J23, D1 − P1〉, L9 = 〈P2, P3, J23, D2 + αP0〉 (α = 0,±1) ,

L10 = 〈P3, D1 + αJ12, D2 + βJ12〉 (α > 0, β ∈ R or α = 0, β ≥ 0) ,

L11 = 〈J12, D1, D2〉, L12 = 〈J12, J13, J23, D1 + αD2〉 (α ∈ R),

L13 = 〈J12, J13, J23, D2 + αP0〉 (α = 0,±1), L14 = 〈J12,K3 − P3, D1〉,

L15 = 〈P1 +K1, P2 +K2, J12, D1〉,

L16 = 〈K1 − P1,K2 − P2,K3 − P3, J12, J13, J23〉,

L17 = 〈P1 +K1, P2 +K2, J12,K3 − P3 + αD1〉 (α ∈ R),

L18 = 〈P1 +K1, P2 +K2, P3 +K3, J12, J13, J23〉.

Proof. Let

Ω0a =
1
2
(Pa +Ka) , Ωa4 =

1
2
(Ka − Pa) , Ωab = −Jab, Ω04 = D

with a, b = 1, 2, 3. They satisfy the following commutation relations:

[Ωαβ ,Ωγδ] = gαδΩβγ + gβγΩαδ − gαγΩβδ − gβδΩαγ ,

where α, β, γ, δ = 0, 1, 2, 3, 4 and (gαβ) = diag [1,−1,−1,−1,−1]. It follows from this that
AC (3) ∼= AO (1, 4).

The classification of subalgebras of the algebra AO (1, 4) up to O (1, 4)-conjugacy is
done in [5]. Let L is an I-maximal subalgebra of rank three of the algebra F and P0 /∈ L.
Denote byK the projection of L onto AO (1, 4). IfK has an invariant isotropic subspace in
the Minkowski space R1,4, then K is conjugate to a subalgebra of the extended Euclidean
algebra AẼ(3) with the basis Pa, Jab, D2 (a, b = 1, 2, 3). In this case, on the basis of
Theorem 1 [6], L is conjugate with one of the subalgebras L1, . . . , L13. If K has no
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invariant isotropic subspace in the space R1,4, thenK is conjugate with one of the following
algebras [5]:

N1 = 〈Ω12,Ω34〉, N2 = AO(1, 2) = 〈Ω01,Ω02,Ω12〉,

N3 = 〈Ω12 +Ω34,Ω13 − Ω24,Ω23 +Ω14〉,

N4 = 〈Ω12 +Ω34,Ω13 − Ω24,Ω23 +Ω14〉 ⊕ 〈Ω12 − Ω34〉,

N5 = AO(1, 2)⊕AO(2) = 〈Ω01,Ω02,Ω12,Ω34〉,

N6 = AO(4) = 〈Ωab : a, b = 1, 2, 3, 4〉, N7 = AO(1, 3) = 〈Ωαβ : α, β = 0, 1, 2, 3〉,

N8 = AO(1, 4) = 〈Ωαβ : α, β = 0, 1, 2, 3, 4〉.

The rank of Nj equals 2 for j = 1, 2; 3 for j = 3, . . . , 7; 4 for j = 8. From this we
conclude that L is conjugate with one of the subalgebras L14, . . . , L18. The theorem is
proved.

3 Reduction of the diffusion equation to the ordinary dif-
ferential equations

For each of the subalgebras L1, . . . , L18 obtained in Theorem 1, we point out the corre-
sponding ansatz ω′ = ϕ (ω) solved for v, where ω and ω′ are functionally independent
invariants of a subalgebra, as well as the reduced equation which is obtained by means of
this ansatz. The numbering of the considered cases corresponds to the numbering of the
subalgebras L1, . . . , L18.

3.1. v = ϕ (ω) , ω = x0, ϕ′ = 0. The corresponding exact solution of the diffusion
equation (1) is trivial: u = C.
3.2. v = ϕ (ω) , ω = x0 − x1, then

ϕ′′ + ϕ4ϕ′ = 0. (3)

The general solution of equation (3) is of the form∫
dϕ

C1 − ϕ5
=

1
5
ω + C2,

where C1 and C2 are arbitrary constants. If C1 = 0, then

ϕ =
(

5
4ω + C

) 1
4

.

The corresponding invariant solution of equation (1) is of the form

u =
[

5
4 (x0 − x1) + C

] 5
4

.



432 L.F. Barannyk and P. Sulewski

3.3. v = x
1−2α

4
0 ϕ (ω) , ω = x1x

−α
0 , then

ϕ′′ − αωϕ4ϕ′ +
1− 2α

4
ϕ5 = 0. (4)

The nonzero function ϕ =
(
Aω2 +Bω + C

)− 1
4 is a solution of equation (4) if and only if

one of the following conditions is satisfied:

1. α = 1, A = 0, C =
5
4
B2.

2. α = 0, A = −1
3
, C = −3

4
B2.

3. A = −1
3
, B = C = 0.

4. α =
5
6
, A = −1

3
, B = 0.

5. α =
1
2
, A = 0, B = 0.

By means of ϕ obtained above, we find such invariant solutions of equation (1):

u =
(
Bx1 +

5
4
B2x0

)− 5
4

, u =
[
− 12x0

(2x1 + 3B)2

] 5
4

, u =
(
− x2

1

3x0
+Bx

2
3
0

)− 5
4

,

where B is an arbitrary constant.
3.4. v = (x0 − x1)

− 1
4 ϕ (ω) , ω = x2 (x0 − x1)

−1,(
1 + ω2

)
ϕ′′ +

(
5
2
− ϕ4

)
ωϕ′ +

5
16

ϕ− 1
4
ϕ5 = 0. (5)

The function ϕ = (Aω +B)−
1
4 , where A and B are constants, satisfies equation (5) if

and only if A2 = −B

(
B − 4

5

)
. The corresponding invariant solution of equation (1) is

of the form u = [Ax2 +B (x0 − x1)]
− 5

4 . It is easy to see that the coefficient B can take

on any value from the interval
(
0;

4
5

)
.

3.5. v = x
1−2α

4
0 ϕ (ω) , ω =

(
x2

1 + x2
2

)
x−2α

0 ,

4ωϕ′′ +
(
4− 2αωϕ4

)
ϕ′ +

1− 2α
4

ϕ5 = 0.

Integrating this equation for α =
5
2
, we obtain the following equation:

4wϕ′ − ωϕ5 = C,

where C is an arbitrary constant. If C = 0, then

ϕ = (−ω +B)−
1
4 .
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Thus, we find the exact solution

u =
(
Bx4

0 −
x2

1 + x2
2

x0

)− 5
4

.

3.6. v = (x0 − x3)
− 1

4 ϕ (ω) , ω =
(
x2

1 + x2
2

)
(x0 − x3)

−2, then

4ω (1 + ω)ϕ′′ +
(
7ω + 4− 2ωϕ4

)
ϕ′ +

5
16

ϕ− 1
4
ϕ5 = 0.

3.7. v =
(
x2

1 + x2
2

)− 1
4 ϕ (ω) , ω =

(
x2

1 + x2
2

)−β
2 exp

(
x0 + α arctan

x1

x2

)
, then

(
α2 + β2

)
ω2ϕ′′ +

(
ϕ4 + α2 + β2 + β

)
ωϕ′ +

1
4
ϕ = 0.

For α = β = 0, we have ϕ = (− lnω − C)
1
4 . Consequently, we find the exact solution

u =
(
−x2

1 + x2
2

x0 + C

)− 5
4

.

3.8. v = x
1
4
0 ϕ (ω) , ω = x1 − lnx0,

ϕ′′ − ϕ4ϕ′ +
1
4
ϕ5 = 0.

3.9. v = x
− 1

2
1 ϕ (ω) , ω = x−α

1 exp(x0), then

α2ω2ϕ′′ +
(
ϕ4 + α2 + 2α

)
ωϕ′ +

3
4
ϕ = 0.

If α = 0, then

ϕ =
(
− 1
3 lnω + C

)− 1
4

.

Whence we obtain the exact solution of (1):

u =
(
−3x0 + C

x2
1

) 5
4

.

3.10. v = x
1
4
0

(
x2

1 + x2
2

)− 1
4 ϕ (ω) , ω = arctan

x1

x2
+ α lnx0 +

β

2
ln

(
x2

1 + x2
2

)
,

(
1 + β2

)
ϕ′′ +

(
αϕ4 − β

)
ϕ′ +

1
4

(
ϕ+ ϕ5

)
= 0.

3.11. v = x
1
4
0

(
x2

1 + x2
2

)− 1
4 ϕ (ω) , ω =

(
x2

1 + x2
2

)
x−2

3 , then

4ω2 (1 + ω)ϕ′′ +
(
6ω2 + 2ω

)
ϕ′ +

1
4

(
ϕ+ ϕ5

)
= 0.
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3.12. v = x
1−2α

4
0 ϕ (ω) , ω =

(
x2

1 + x2
2 + x2

3

)
x−2α

0 , then

4ωϕ′′ +
(
6− 2αωϕ4

)
ϕ′ +

1− 2α
4

ϕ5 = 0. (6)

Integrating this reduced equation for α =
5
2
, we find the equation

4ωϕ′ + 2ϕ− ωϕ5 = C̃,

where C̃ is an arbitrary constant. If C̃ = 0, then the general solution of this reduced
equation is of the form

ϕ =
(
Cω2 + ω

)− 1
4 .

The corresponding invariant solution of equation (1) is a function

u =

[
x6

0

C
(
x2

1 + x2
2 + x2

3

)2 + x5
0

(
x2

1 + x2
2 + x2

3

)] 5
4

.

For α = −5
2
equation (6) has a solution given by

ϕ = (ω + C)−
1
4 .

Thus, we find the exact solution

u =

(
x6

0(
x2

1 + x2
2 + x2

3

)
x5

0 + C

) 5
4

.

3.13. v =
(
x2

1 + x2
2 + x2

3

)− 1
4 ϕ (ω) , ω = 2x0 − αln

(
x2

1 + x2
2 + x2

3

)
, then

2α2ϕ′′ + ϕ4ϕ′ − 1
8
ϕ = 0.

For α = 0 we have ϕ =
(
1
2
ω + C

) 1
4

. Whence we obtain the exact solution

u =
(

x0 + C

x2
1 + x2

2 + x2
3

) 5
4

.

3.14. v = x
1
4
0

(
x2

1 + x2
2

)− 1
4 ϕ (ω) , ω =

x2
1 + x2

2 + x2
3 + 1(

x2
1 + x2

2

) 1
2

,

(
ω2 − 4

)
ϕ′′ + 2ωϕ′ +

1
4
ϕ

(
1 + ϕ4

)
= 0.

3.15. v = x
1
4
0 x

− 1
2

3 ϕ (ω) , ω =
x2

1 + x2
2 + x2

3 − 1
x3

,

(
ω2 + 4

)
ϕ′′ + 3ωϕ′ +

1
4
ϕ

(
3 + ϕ4

)
= 0.
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3.16. v =
(
x2

1 + x2
2 + x2

3 + 1
)− 1

2 ϕ (ω) , ω = x0, then

ϕ3ϕ′ − 3 = 0.

In this case, ϕ = (12ω + C)
1
4 , and therefore

u =

[
12x0 + C(

x2
1 + x2

2 + x2
3 + 1

)2

] 5
4

.

3.17. v =
[(
x2

1 + x2
2 + x2

3 − 1
)2 + 4x2

3

]− 1
4 exp

[
α

8
arctan

x2
1 + x2

2 + x2
3 − 1

2x3

]
ϕ (ω),

ω = α arctan
x2

1 + x2
2 + x2

3 − 1
2x3

− 2 lnx0,

4α2ϕ′′ +
[
α2 − 2ϕ4 exp

(ω
2

)]
ϕ′ +

α2 + 16
16

ϕ = 0.

We have the exact solution

u =

[
C − 4x0(

x2
1 + x2

2 + x2
3 − 1

)2 + 4x2
3

] 5
4

.

3.18. v =
(
x2

1 + x2
2 + x2

3 − 1
)− 1

2 ϕ (ω) , ω = x0, then

ϕ3ϕ′ + 3 = 0.

Integrating this equation, we obtain

ϕ = (−12ω + C)
1
4 .

The corresponding invariant solution of equation (1) is of the form

u =

[
C − 12x0(

x2
1 + x2

2 + x2
3 − 1

)2

] 5
4

.

4 Multiplication of solutions

Solving the Lie equations corresponding to the basis elements of the algebra F , we obtain
a one-parameter group of transformations (x0, x1, x2, x3, u) → (x′0, x′1, x′2, x′3, u′) generated
by these vector fields:

exp (ΘP0) : x′0 = x0 +Θ, x′a = xa (a = 1, 2, 3) , u′ = u;

exp (ΘPa) : x′0 = x0, x′a = xa −Θ, x′c = xc for c �= a, u′ = u;

exp (ΘJab) : x′0 = x0, x′a = xa cosΘ− xb sinΘ,

x′b = xa sinΘ + xb cosΘ, x′c = xc, u
′ = u, where {a, b, c} = {1, 2, 3} ;
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exp (ΘD1) : x′0 = x0 exp(Θ), x′a = xa (a = 1, 2, 3) , u′ = u exp
(
5Θ
4

)
;

exp (ΘD2) : x′0 = x0, x′a = xa exp(Θ) (a = 1, 2, 3) , u′ = u exp
(
−5Θ

2

)
;

exp (ΘKa) : x′0 = x0, x′c =
xc − δacΘ�x2

1− 2Θxa +Θ2�x2
(c = 1, 2, 3) ,

u′ = u
(
1− 2Θxa +Θ2�x2

) 5
2 , where �x2 = x2

1 + x2
2 + x2

3.
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