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Abstract

The group transformation theoretic approach is applied to present an analytic study
of the steady state temperature distribution in a general triangular region, Ω, for given
boundary conditions, along two boundaries, in a form of polynomial functions in any
degree “n”, as well as the study of heat flux along the third boundary. The Laplace’s
equation has been reduced to a second order linear ordinary differential equation with
appropriate boundary conditions. Analytical solution has been obtained for different
shapes of Ω and different boundary conditions.

1 Introduction

The Laplace’s equation arises in many branches of physics attracts a wide band of re-
searchers. Electrostatic potential, temperature in the case of a steady state heat conduc-
tion, velocity potential in the case of steady irrotational flow of ideal fluid, concentration
of a substance that is diffusing through solid, and displacements of a two-dimensional
membrane in equilibrium state, are counter examples in which the Laplace’s equation is
satisfied.
The mathematical technique used in the present analysis is the parameter-group trans-

formation. The group methods, as a class of methods which lead to reduction of the
number of independent variables, were first introduced by Birkhoff [4] in 1948, where he
made use of one-parameter transformation groups. In 1952, Morgan [6] presented a the-
ory which has led to improvements over earlier similarity methods. The method has been
applied intensively by Abd-el-Malek et al. [1–3].
In this work, we present a general procedure for applying a one-parameter group trans-

formation to the Laplace’s equation in a triangular domain. Under the transformation, the
partial differential equation with boundary conditions in polynomial form, of any degree,
is reduced to an ordinary differential equation with the appropriate corresponding condi-
tions. The equation is then solved analytically for some forms of the triangular domain
and boundary conditions.
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2 Mathematical formulation

The governing equation, for the distribution of temperature T (x, y), is given

∂2T

∂x2
+

∂2T

∂y2
= 0, (x, y) ∈ Ω (2.1)

with the following boundary conditions:

(i) T (x, y) = αxn, (x, y) ∈ L1,

(ii) T (x, y) = βxn, (x, y) ∈ L2,
(2.2)

We seek for the distribution of the temperature T (x, y) inside the domain Ω and the heat
flux across L3 with

L1 : y = x tanΦ1,
L2 : y = −x tanΦ2,
L3 : y = x tanΦ3 + b, b �= 0,

n ∈ {0, 1, 2, 3, . . .}, α, β are constants.
Write

T (x, y) = w(x, y)q(x), q(x) �≡ 0 in Ω.
Hence, (2.1) and (2.2) take the form:

q(x)
(

∂2

∂x2
+

∂2w

∂y2

)
+ 2

∂w

∂x

dq

dx
+ w

d2q

dx2
= 0 (2.3)

with the boundary conditions:

(i) w(x, y) =
αxn

q(x)
, (x, y) ∈ L1,

(ii) w(x, y) =
βxn

q(x)
, (x, y) ∈ L2.

(2.4)

3 Solution of the problem

The method of solution depends on the application of a one-parameter group transforma-
tion to the partial differential equation (2.1). Under this transformation, two independent
variables will be reduced by one and the differential equation (2.1) transforms into an
ordinary differential equation in only one independent variable, which is the similarity
variable.

3.1 The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter
“a” of the form

G : S = Cs(a)S +Ks(a), (3.1)

where S stands for x, y, w, q and the C’s andK’s are real-valued and at least differentiable
in the real argument “a”.
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3.2 The invariance analysis

To transform the differential equation, transformations of the derivatives are obtained
from G via chain-rule operations:

Si =
(
CS

Ci

)
, Si j =

(
CS

CiCj

)
Sij , i = x, y; j = x, y,

where S stands for w and q.
Equation (2.3) is said to be invariantly transformed whenever

q(wx x + wy y) + 2wxqx + wqx x = H1(a) [q(wxx + wyy) + 2wxqx + wqxx] (3.2)

for some function H1(a) which may be a constant.
Substitution from equations (3.1) into equation (3.2) for the independent variables, the

functions and their partial derivatives yields

q

([
CqCw

(Cx)2

]
wxx +

[
cqCw

(Cy)2

]
wyy

)
+ 2

[
CqCw

(Cx)2

]
wxqx +

[
CqCw

(Cx)2

]
wqxx + ξ1(a) =

H1(a) [q(wxx + wyy) + 2wxqx + wqxx] ,
(3.3)

where

ξ1(a) = (KqCw)
(

wxx

(Cx)2
+

wyy

(Cx)2

)
+

[
KwCq

(Cx)2

]
qxx.

The invariance of (3.3) implies ξ1(a) ≡ 0. This is satisfied by putting

Kq = Kw = 0

and [
CqCw

(Cx)2

]
=

[
CqCw

(Cy)2

]
= H1(a),

which yields

Cx = Cy.

Moreover, the boundary conditions (2.4) are also invariant in form, that implies

Kx = Kq = Kw = 0, and CqCw = (Cx)n.

Finally, we get the one-parameter group G which transforms invariantly the differential
equation (2.3) and the boundary conditions (2.4). The group G is of the form

G :




x = Cxx
y = Cxy +Ky

w = Cww

q =
[
(Cx)n

Cw

]
q
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3.3 The complete set of absolute invariants

Our aim is to make use of group methods to represent the problem in the form of an
ordinary differential equation (similarity representation) in a single independent variable
(similarity variable). Then we have to proceed in our analysis to obtain a complete set
of absolute invariants. In addition to the absolute invariants of the independent variable,
there are two absolute invariant of the dependent variables w and q.
If η ≡ η(x, y) is the absolute invariant of independent variables, then

qj(x, y;wq) = Fj [η(x, y)]; j = 1, 2,

are two absolute invariants corresponding to w and q. The application of a basic theorem
in group theory, see [5], states that: function g(x, y;w, q) is an absolute invariant of a
one-parameter group if it satisfies the following first-order linear differential equation

4∑
i=1

(αiSi + βi)
∂g

∂Si
= 0, (3.4)

where Si stands for x, y, w and q, respectively, and

αi =
∂CSi

∂a
(a0) and βi =

∂KSi

∂a
(a0), i = 1, 2, 3, 4,

where a0 denotes the value of “a” which yields the identity element of the group.
From which we get: α1 = α2 and β1 = β3 = β4 = 0. We take β2 = 0.
At first, we seek the absolute invariants of independent variables. Owing to equa-

tion (3.4), η(x, y) is an absolute invariant if it satisfies the first-order partial differential
equation

x
∂η

∂x
+ y

∂η

∂y
= 0,

which has a solution in the form

η(x, y) =
y

x
. (3.5)

The second step is to obtain the absolute invariant of the dependent variables w and q.
Applying (3.4), we get q(x) = R(x)θ(η).
Since q(x) and R(x) are independent of y, while η is a function of x and y, then θ(η)

must be a constant, say θ(η) = 1, and from which

q(x) = R(x), (3.6)

and the second absolute invariant is:

w(x, y) = Γ(x)F (η). (3.7)
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4 The reduction to an ordinary differential equation

As the general analysis proceeds, the established forms of the dependent and independent
absolute invariants are used to an obtain ordinary differential equation. Generally, the
absolute invariant η(x, y) has the form given in (3.5).
Substituting from (3.6), (3.7) into equation (2.3) yields

(η2 + 1)
d2F

dη2
− 2η

[(
1
Γ
dΓ
dx
+
1
R

dR

dx

)
x− 1

]
dF

dη
+

[
1
Γ
d2Γ
dx2

+
2
RΓ

dR

dx

dΓ
dx
+
1
R

d2R

dx2

]
x2F = 0.

(4.1)

For (4.1) to be reduced to an expression in the single independent invariant η, the
coefficients in (4.1) should be constants or functions of η. Thus,

(
1
Γ
dΓ
dx
+
1
R

dR

dx

)
x = C1, (4.2)

(
1
Γ
d2Γ
dx2

+
2
RΓ

dR

dx

dΓ
dx
+
1
R

d2R

dx2

)
x2 = C2. (4.3)

It follows, then, from (4.2) that:

Γ(x)R(x) = C3x
C1 .

Also, from (4.2) and (4.3) we can show that

C2 = C1(C1 − 1).
By taking C3 = 1 and C1 = n, we get

(η2 + 1)F ′′ − 2η(n− 1)F ′ + n(n− 1)F = 0. (4.4)

Under the similarity variable η, the boundary conditions are:

F (tanΦ1) = α, F (− tanΦ2) = β, (4.5)

such that the boundary L1 or L2 does not coincide with the vertical axis.

5 Analytic solution

Solution corresponds to: n = 0

Equation (4.4) takes the form:

(η2 + 1)F ′′ + 2ηF ′ = 0.

Its solution with the aid of boundary conditions (4.5) is presented as

F (η) =
1

Φ1 +Φ2

[
(α− β) tan−1 η + βΦ1 + αΦ2

]
,
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and from which

T (x, y) =
1

Φ1 +Φ2

[
(α− β) tan−1

(y

x

)
+ βΦ1 + αΦ2

]
.

Heat flux across L3:

∂T

∂n
(x, y)

∣∣∣
L3

= −∂T

∂x
sinΦ3 +

∂T

∂y
cosΦ3.

Hence, we get:

∂T

∂n
(x, y)

∣∣∣
L3

= − sinΦ3

(
β − α

Φ1 +Φ2

) (
y

x2 + y2

)
+ cosΦ3

(
α− β

Φ1 +Φ2

) (
x

x2 + y2

)
.

Solution corresponds to: n ≥ 1

F (η) = b0

[n2 ]∑
k=0

(−1)k
(

n
2k

)
η2k +

b1
n

[n−1
2 ]∑

k=0

(−1)k
(

n
2k + 1

)
η2k+1 (5.1)

and from which we get

T (x, y) = b0

[n2 ]∑
k=0

(−1)k
(

n
2k

)
y2kxn−2k +

b1
n

[n−1
2 ]∑

k=0

(−1)k
(

n
2k + 1

)
y2k+1xn−2k−1

∂T

∂n
(x, y)

∣∣∣
L3

= b0[− sinΦ3M0,1 + cosΦ3M0,2] +
b1
n
[− sinΦ3M1,1 + cosΦ3M1,2].

Applying the boundary conditions (4.5), we get:

α = b0z0,1 +
b1
n
z1,1, (5.2)

β = b0z0,2 +
b1
n
z1,2 (5.3)

where

M0,1 =
[n−1

2 ]∑
k=0

(−1)k(n− 2k)
(

n
2k

)
y2kxn−2k−1,

M1,1 =
[n−2

2 ]∑
k=0

(−1)k(n− 2k − 1)
(

n
2k + 1

)
y2k+1xn−2k−2,

M0,2 =
[n2 ]∑
k=0

(−1)k(2k)
(

n
2k

)
y2k−1xn−2k,

M1,2 =
[n−1

2 ]∑
k=0

(−1)k(2k + 1)
(

n
2k + 1

)
y2kxn−2k−1,
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z0,1 =
[n2 ]∑
k=0

(−1)k
(

n
2k

)
tan2k Φ1, z1,1 =

[n2 ]∑
k=0

(−1)k
(

n
2k + 1

)
tan2k+1Φ1,

z0,2 =
[n2 ]∑
k=0

(−1)k
(

n
2k

)
tan2k Φ2, z1,2 =

[n2 ]∑
k=0

(−1)k
(

n
2k + 1

)
tan2k+1Φ2.

Solving (5.2) and (5.3) for the given value of “n” we get b0 and b1.

6 Special Cases

Case 1: Boundary conditions with different degrees of polynomials

The governing equation is given as

∂2T

∂x2
+

∂2T

∂y2
= 0, (x, y) ∈ Ω,

with the following boundary conditions:

(i) T (x, y) = αx6, (x, y) ∈ L1,
(ii) T (x, y) = βx5, (x, y) ∈ L2,

and Φ1 = 60◦, Φ2 = 45◦, Φ3 = 0◦.
From the principle of superposition, write

T (x, y) = T1(x, y) + T2(x, y),

where the boundary conditions for T1(x, y) are:

(i) T (x, y) = αx6, (x, y) ∈ L1,
(ii) T (x, y) = 0, (x, y) ∈ L2,

and the boundary conditions for T2(x, y) are:

(i) T (x, y) = 0, (x, y) ∈ L1,
(ii) T (x, y) = βx5, (x, y) ∈ L2.

Setting n = 6 in the general solution (5.1), we get:

T1(x, y) =
α

64
(x6 − 15y2x4 + 15y4x2 − y6),

∂T1

∂n
(x, y)

∣∣∣
L3

= −3αb
32
(5x4 − 10b2x2 + b4).

Setting n = 5 in the general solution (5.1), we get:

T2(x, y) =
β

4(1−√
3)

[√
3(x5 − 10y2x3 + 5y4x) + (5yx4 − 10y3x2 + y5)

]
,

∂T2

∂n
(x, y)

∣∣∣
L3

=
5β

4(1−√
3)

[
−4b

√
3(x3 − b2x) + (x4 − 6b2x2 + b4)

]
.
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Hence, the analytic solution has the form

T (x, y) =
α

64
(x6 − 15y2x4 + 15y4x2 − y6)+

β

4(1−√
3)

[√
3(x5 − 10y2x3 + 5y4x) + (5yx4 − 10y3x2 + y5)

]
,

and
∂T

∂n
(x, y)

∣∣∣
L3

= −3αb
32
(5x4 − 10b2x2 + b4)+

5β
4(1−√

3)

[
−4b

√
3(x3 − b2x) + (x4 − 6b2x2 + b4)

]
.

Case 2: One of the boundaries is vertical

The governing equation is given by

∂2T

∂x2
+

∂2T

∂y2
= 0, (x, y) ∈ Ω (6.1)

with the following boundary conditions:

(i) T (x, y) = αyn, (x, y) ∈ L1,
(ii) T (x, y) = βxn, (x, y) ∈ L2,

(6.2)

and Φ1 =
π

2
.

Write

T (x, y) = w(x, y)q(y), q(y) �≡ 0 in Ω.

Hence, (6.1) and (6.2) take the form:

q(y)
(
∂2w

∂x2
+

∂2w

∂y2

)
+ 2

∂w

∂y

dq

dy
+ w

d2q

dy2
= 0 (6.3)

with the boundary conditions:

(i) w(x, y) =
αyn

q(y)
, (x, y) ∈ L1,

(ii) w(x, y) =
βxn

q(y)
, (x, y) ∈ L2.

Applying the invariant analysis, we get:

G :




x = Cxx
y = Cxy
w = Cww

q =
(Cx)n

Cw
q

and the absolute invariant η(x, y) is:

η(x, y) =
x

y
. (6.4)
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The complete set of the absolute invariant corresponding to w and q are:

q(y) = R(y), (6.5)

w(x, y) = Γ(y)F (η). (6.6)

Substituting (6.4)–(6.6) in (6.3), with Γ(y)R(y) = yn, we get:

(η2 + 1)F ′′ − 2η(n− 1)F ′ + n(n− 1)F = 0. (6.7)

Under the similarity variable η, the boundary conditions are:
F (0) = α,
F (− cotΦ2) = (− cotΦ2)nβ.

(6.8)

For n = 0: Solution of (6.7) with the boundary conditions (6.8) is:

T (x, y) =
β − α
π
2 +Φ2

tan−1

(
x

y

)
+ α.

The heat flux across L3 is:
∂T

∂n

∣∣∣
L3

=
α− β
π
2 +Φ2

1
x2 + y2

(y sinΦ3 + x cosΦ3).

For n ≥ 1: Solution of (6.7) with the boundary conditions (6.8) is:

T (x, y) = b0

[n2 ]∑
k=0

(−1)k
(

n
2k

) (
x

y

)2k

yn +
b1
n

[n−1
2 ]∑

k=0

(−1)k
(

n
2k + 1

) (
x

y

)2k+1

yn,

where

b0 = α, (6.9)

β(− cotΦ2)n = b0

[n2 ]∑
k=0

(−1)k
(

n
2k

)
cot2k Φ2+

b1
n

[ n
2−1 ]∑
k=0

(−1)k+1

(
n

2k + 1

)
cot2k+1Φ2.(6.10)

Solving (6.9) and (6.10) for the given value of “n” we get b0 and b1.
The heat flux across L3 is:

∂T

∂n
(x, y)

∣∣∣
L3

= b0 [− sinΦ3N0,1 + cosΦ3N0,2] +
b1
n
[− sinΦ− 3N1,1 + cosΦ3N1,2] ,

where

N0,1 =
[n2 ]∑
k=0

(−1)k(2k)
(

n
2k

)
x2k−1yn−2k,

N1,1 =
[n−1

2 ]∑
k=0

(−1)k(2k + 1)
(

n
2k + 1

)
x2kyn−2k−1,

N0,2 =
[n−1

2 ]∑
k=0

(−1)k(n− 2k)
(

n
2k

)
x2kyn−2k−1,

N1,2 =
[n−2

2 ]∑
k=0

(−1)k(n− 2k − 1)
(

n
2k + 1

)
x2k+1yn−2k−2.
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Case 3: Φ1 = Φ2 =
π

4
, Φ3 = 0

From (5.2), (5.3) and Φ1 = Φ2 =
π

4
, we find that n = 2.

The governing equation is given by

∂2T

∂x2
+

∂2T

∂y2
= 0, (x, y) ∈ Ω (6.11)

with the following boundary conditions:

(i) T (x, y) = αx2, (x, y) ∈ L1,
(ii) T (x, y) = −αx2, (x, y) ∈ L2.

(6.12)

Write

T (x, y) = w(x, y)q(x), q(x) �≡ 0 in Ω.

Hence, (6.11) and (6.12) take the form:

q(x)
(
∂2w

∂x2
+

∂2w

∂y2

)
+ 2

∂w

∂x

dq

dx
+ w

d2q

dx2
= 0 (6.13)

with the boundary conditions:

(i) w(x, y) =
αx2

q(x)
, (x, y) ∈ L1,

(ii) w9x, y) = − αx2

q(x)
, (x, y) ∈ L2.

Applying the invariant analysis, we get:

G :




x = Cxx
y = Cxy +Ky

w = Cww

q =
(Cx)2

Cw
q

and the absolute invariant η(x, y) is:

η(x, y) =
y

x
. (6.14)

The complete set of the absolute invariants corresponding to w and q is:

q(x) = R(x), (6.15)

w(x, y) = Γ(x)F (η). (6.16)

Substituting (6.14)–(6.16) in (6.13), with Γ(x)R(x) = x2, we get:

(η2 + 1)F ′′ − 2ηF ′ + 2F = 0. (6.17)
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Under the similarity variable η, the boundary conditions are:

F (−1) = −α,
F (1) = α.

(6.18)

It is clear that two conditions in (6.18) are identical. Hence, to find the second condition,
assume that the heat flux across L3 takes the form:

∂T

∂y

∣∣∣
L3

= γ + αx, (6.19)

where γ is a constant.
Solution of (6.17) with the boundary conditions (6.18) and (6.19) is:

T (x, y) =
γ

2b
(y2 − x2) + αxy.
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