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Abstract

Deformation of the Heisenberg-Weyl algebra W s of creation-annihilation operators is
studied and the problem of eigenvalues of the Hamiltonian for s deformed oscillators
with interaction is solved within this algebra. At first, types of deformation are found
for which solutions could be presented analytically and a simple q−deformation is
considered by the means of the perturbation theory. Cases of reducing Hamiltonians
which do not preserve the total particle number to that studied here are indicated.

Investigations of new types of symmetries in different areas of mathematical physics by us-
ing the Inverse Scattering Method (ISM) and nonlinear differential equations, led to the ap-
pearance of notions ”Quantum Group”, ”Quantum Algebra” [1]. Nowadays, the deformed
quantum statistics, parastatistics and corresponding algebras of creation-annihilation op-
erators are widely studied.

The common Heisenberg-Weyl algebraW s consists of generators âi, â+
i , n̂i, i = 1, . . . , s,

satisfying commutative relations:

[âi, â
+
j ] = δij , [n̂i, â

±
j ] = ±â±j δij ,

[âi, âj ] = [â+
i , â

+
j ] = 0, n̂+

i = n̂i.
(1)

In this paper, the deformed algebra Ad(s) with generators âi, â+
i , n̂i, i = 1, . . . , s,

satisfying:

[âi, â
+
j ] = fi(n̂1, . . . , n̂s)δij ,

the rest relations are the same as in (1)
(2)

is considered. If we assume fi(n̂1, . . . , n̂s) = 1, we return to the algebra W s (1). One-
dimensional deformed oscillators were studied in different papers [2, 3, 10].

Here, we study the problem of eigenvalues of the Hamiltonian

Ĥ =
s∑

i,j=1

wij â
+
i âj (3)

which gives us s deformed oscillators with interaction.
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Algebraically solvable Case

By means of the linear transformation

b̂i =
∑

k

αikâk, (4)

where ||αik|| is unitary matrix with∑
k

αikα
∗
jk = δij , (5)

one can receive a new set of generators bi, b+i , Ni, i = 1, . . . , s, which determine a new
algebra Bd(s).

Now we can rewrite (3) using the generators of the algebra Bd(s):

Ĥ =
∑
ij

w′
ij b̂

+
i b̂j , (6)

where w′
ij =

∑
kl

wklαikα
∗
jl.

Choosing the appropriate matrix ||αik||, we can diagonalize ||w′
ij || and obtain

Ĥ =
∑

i

w′
ib̂

+
i b̂i. (7)

This Hamiltonian gives us a set of noninteracting deformed oscillators. To find eigen-
values of (7), one should know the commutative relations on Bd(s):

[̂bi, b̂+j ] = Fij(n̂1, . . . , n̂s),

the rest are the same as in (1)

(considering the substitution âi → b̂i, n̂i → N̂i),

(8)

where

Fij(n̂1, . . . , n̂s) =
∑

αikα
∗
jkfi(n̂1, . . . , n̂s) (9)

are the functions of ”old” generators n̂1, . . . , n̂s, but we should express the right side of
the first equation (8) in the terms of ”new” generators N̂1, . . . , N̂s

The operators N̂i cannot be represented as functions of operators n̂i generally. There-
fore, in the case of the arbitrary algebra Ad(s), the transition from n̂i to N̂i on the right
side of the first equation (8) cannot be fulfilled.

One can introduce operators

n̂ = n̂1 + · · ·+ n̂s, N̂ = N̂1 + · · ·+ N̂s, (10)

of the total particle number for the old (Ad(s)) and new (Bd(s)) algebras, respectively.
It can be easily proved that

n̂ = N̂ . (11)
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So, if we have deformed the algebra Ad(s) with functions fi satisfying

fi(n̂1, . . . , n̂s) = fi(n̂1 + · · ·+ n̂s) = fi(n̂), (12)

then the first relation (8) will read due to (11) as

[̂bi, b̂+j ] = Fij(N̂), (13)

where

Fij(N̂) =
∑

k

αikα
∗
jkfi(N̂). (14)

Eigenvalues of (7) can be immediately found now:

EN1...NS
=

s∑
i=1

w′
iβi(N,Ni) (15)

with the corresponding eigenfunctions |N1, . . . , Ns >, where

βi(N,Ni) =
Ni∑
j=1

Fii(N − j), N = N1 + · · ·+Ns.

These deformed algebras Ad(s) (2), (12), for which the problem of eigenvalues is solvable,
don’t factorize, i.e., cannot be represented as sets of s independent deformed algebras.

q-Deformation

Let us consider now the deformed algebra Aq(2) consisting of 2 one-dimensional q-deformed
algebras with generators â, b̂ (â = â1, b̂ = â2) and standard particle number operators n̂a,
n̂b satisfying:

ââ+ − qâ+â = 1, b̂b̂+ − qb̂+b̂ = 1. (16)

After introducing new operators

Ŝ+ = â+b, Ŝ− = b̂+a, (17)

Hamiltonian (3) will read:

Ĥ = wan̂a + wbn̂b + v(Ŝ+ + Ŝ−). (18)

The set of generators {n̂a, b̂a, Ŝ
+, Ŝ−} satisfies:

[n̂a, Ŝ
±] = ±Ŝ±, [n̂b, Ŝ

±] = ∓Ŝ±, [n̂a, n̂b] = 0, [Ŝ+, Ŝ−] = [n̂a]− [n̂b], (19)

where [x] means the function [x] =
qx − 1
q − 1

.

The Casimir operator of the algebra {n̂a, b̂a, Ŝ
+, Ŝ−} is

K̂ = n̂ = n̂a + n̂b. (20)
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Consider the problem of eigenvalues of the reduced Hamiltonian (18) on invariant sub-
spaces Kn = L(|i, n − i > | i = 1, . . . , n). One can obtain basis vectors in Kn by using
the vector |0, n >:

|i, n− i >=

√
[n− 1]!
[n]![i]!

(S+)i|0, n >, (21)

where [n]! = [n][n− 1] · · · [1].
Now let us take the representation where operators {Ŝ+|Kn , Ŝ

−|Kn , n̂a|Kn , n̂b|Kn} re-
duced on the subspaces Kn are given by:

Ŝ+|Kn = t,

Ŝ+|Kn =
1
t

[
t
t

dt

] [
n+ 1− t

t

dt

]
,

n̂a|Kn = t
t

dt
,

n̂b|Kn = n− t
t

dt
.

(22)

Vectors ψ ∈ K̂n read:

ψ =
n∑

i=1

Cit
i. (23)

In view of (21), one can write ψ =

(
n∑

i=1

CiS
+i

)∣∣∣0, n > and, taking into account the first

equation (22), we receive (23). Now we obtain the equation

T̂nψ(t) = Eψ(t), (24)

where

T̂n = v ·
(
t+

1
t

[
t
t

dt

] [
n+ 1− t

dt

])
+ w1 ·

[
t
t

dt

]
+ w2 ·

[
n− t

t

dt

]
, (25)

on the condition that ψ(t) is an analytic function. In the nondeformed case (q = 1),
equation (24) can be transformed into a degenerated hypergeometric equation and easily
solved:

Enm = n
w1 + w2

2
+ (2m− n)

√(
w1 − w2

2

)2

+ v2. (26)

In the deformed case, equation (24) was solved by the means of perturbation theory, using
the potential of interaction v between oscillators as a small parameter. Energy eigenvalues
were found up to the 5-th order of perturbation theory:

E
(k)
0 = w1 · [k] + w2 · [n− k], E

(k)
2 =

B(k − 1)
Γ(k − 1)

+
B(k)

Γ(k + 1)
,

E
(k)
4 =

B(k − 1)
Γ(k − 1)2

{
B(k − 2)
Γ(k − 2)

− B(k − 1)
Γ(k − 1)

− B(k)
Γ(k + 1)

}
+

+
B(k)

Γ(k − 1)2

{
B(k + 1)
Γ(k + 2)

− B(k − 1)
Γ(k − 1)

− B(k)
Γ(k + 1)

}
,

(27)
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where B(p) = [p+ 1][n− p], Γ(p) = w ([k]− [p]) + w ([n− k] + [n− p]) .
All odd approximations are equal to zero:

E1 = E3 = · · · = E2p+1 = 0. (28)

Generalized Weyl Shift

A Weyl shift of the nondeformed algebra W s reads:

b̂i = âi + αi. (29)

For the deformed algebra Aq(s), it can be assumed in the form proposed in [4]:

b̂i = Fi(n̂i)âi − fi(n̂i), fi = wiq
n̂i , Fi =

√
1− |wi|2(1− q)qn̂i . (30)

Hamiltonian (3) preserves the total particle number n = n1 + · · ·+ns, but if we make the
generalized Weyl shift (30), it will not. There will be some terms in a shifted Hamiltonian,
which will increase or decrease the particle number by 1.

Our aim is to find ”shifted” Hamiltonians (which violate the particle number at 1 unit)
which can be reduced to ”neutral” Hamiltonians (preserving the particle number n). The
general ”neutral” Hamiltonian which covers case (3) reads:

Ĥ =
∑
ij

φij (̂b+i b̂i, b̂
+
j b̂j , b̂

+
i b̂j , b̂

+
j b̂i). (31)

After shift (30), arguments of (31) will read as

b̂+i b̂j =
(
â+

i F
+
i − f+

i

)
(Fj âj − fj) =

= â+
i σ̂ij(n̂i, n̂j)âj + â+

i π̂ij(n̂i, n̂j) + π̂+ij(n̂i, n̂j)âj + ω̂ij(n̂i, n̂j),
(32)

where σ̂ij , π̂ij , π̂ij are some ”neutral” functions. Developing (31) into the series in new
shifted arguments (right side of (32)), we will receive some ”shifted” Hamiltonian Ĥ ′. If
we demand that Ĥ ′ violate n not more than by 1 unit, we should consider φij to be a
linear function of its arguments, because these arguments (32) do violate n by one unit,
and higher powers of (32) will violate n more than by one unit. φij reads:

φij(x, y, z, t) = αijx+ βijy + γijz + ζijt, (33)

and we receive Hamiltonian (3):

Ĥ =
s∑

i,j=1

wij b̂
+
i b̂j , (34)

where

wij = γij + ζij + δij
∑

k

(αik + βik).
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