Representation of Real Forms of Witten's First Deformation

Stanislav POPOVYCH

Taras Shevchenko National University, Kyiv, Ukraine

Abstract

Special star structures on Witten's first deformation are found. Description of all irreducible representations in the category of Hilbert spaces of the found *-algebras in both bounded and unbounded operators is obtained.

1 Introduction

Studying Jone's polynomials in node theories, their generalization and their connections with "vertex models" in two-dimensional statistical mechanics, Witten presents Hoph algebra deformations of the universal enveloping algebra su(2). There is a family of associative algebras depending on a real parameter p. These algebras are given by the generators E_0 , E_+ , E_- and relations [2]:

$$pE_0E_+ - \frac{1}{p}E_+E_0 = E_+,\tag{1}$$

$$[E_{+}, E_{-}] = E_{0} - \left(p - \frac{1}{p}\right) E_{0}^{2}, \tag{2}$$

$$pE_{-}E_{0} - \frac{1}{p}E_{0}E_{-} = E_{-}. (3)$$

In Section 1, we write down all (but from a certain class) star algebra structures on Witten's first deformation. In Section 3, we give description of all irreducible representations in bounded or unbounded operators of the found *-algebras in the category of Hilbert's spaces. We widely use the "dynamical relations" method developed in [3].

2 Real forms

Witten's first deformation is a family of associative algebras A_p given by generators and relations (1)–(3), with the parameter p in (0,1). Extreme cases are p = 1, which is su(2), and p = 0, with relations $E_+E_0 = E_0E_+ = E_0^2 = 0$. We consider stars on A_p , which are obtained from involutions on the free algebra with the invariant lineal subspace generated by relations (1)–(3).

Stars are equivalent if the corresponding real forms are isomorphic.

Lemma 1 There are only two unequivalent stars on Witten's first deformation:

$$E_0^* = E_0, \qquad E_+^* = E_-, \tag{4}$$

$$E_0^* = E_0, \qquad E_+^* = -E_-. \tag{5}$$

S. Popovych

3 Dynamical relations.

Relations (1)–(3) with star (4) or (5) form a dynamic relation system [3]. The corresponding dynamic system on \mathbb{R}^2 :

$$F(x,y) = \left(p^{-1}(1+p^{-1}x), g(gy-x+(p-p^{-1})x^2)\right),\,$$

where g = 1 (g = -1) for the first (second) real form.

It's a quite difficult task to find positive orbits of a two-dimensional nonlinear dynamic system, to avoid these difficulties, we use Casimir element:

$$C_p = p^{-1}E_+E_- + pE_-E_+ + E_0^2$$
.

For any irreducible representation T: $T(C_p) = \mu I$, where μ is complex.

We will be working with the following system:

$$E_0 E_+ = E_+ f(E_0), (6)$$

$$E_{+}^{*}E_{+} = G_{\nu}(E_{0}), \tag{7}$$

where $\nu = \mu p$,

$$f(X) = p^{-1}(1 + p^{-1}x),$$

$$G_{\nu}(y) = \frac{g}{1 + p^{2}}(-y - p^{-1}y^{2} + \nu I).$$

Lemma 2 For any irreducible representation T of the real form A_p , there is a unique ν ($\nu \geq 0$ for the first real form) such that T is the representation of (6), (7).

For an arbitrary ν ($\nu \geq 0$ for the first real form), every irreducible representation T of (6), (7) with dim T > 1 is a representation of A_p .

The dynamic system corresponding to relations (6), (7) is actually one-dimensional and linear depending on one real parameter.

Below we compile some basic facts from [3]. Every irreducible representation of a dynamic system is determined by the subset $\mathbb{R}^2 \supset \Delta$:

$$\Delta = \{(\lambda_k, \mu_k), j < k < J\},\$$

where $\lambda_{k+1} = f(\lambda_k)$, $\mu_{k+1} = G_{\nu}(\lambda_k)$, $\mu_k \ge 0$, $\mu_k = 0$ for extreme k; j, J are integer or infinite; $l_2(\Delta)$ is a Hilbert space with the orthonormed base: $\{e_{(\lambda_k,\mu_k)}: (\lambda_k,\mu_k) \in \Delta\}$,

$$T(E_0)e_{(\lambda_k,\mu_k)} = \lambda_k e_{(\lambda_k,\mu_k)},$$

$$T(E_+)e_{(\lambda_k,\mu_k)} = \mu_{k+1}^{1/2} e_{(\lambda_{k+1},\mu_{k+1})}, \qquad j < k+1 < J,$$

$$T(E_-)e_{(\lambda_k,\mu_k)} = \mu_k^{1/2} e_{(\lambda_{k-1},\mu_{k-1})}, \qquad j < k-1,$$

$$T(E_+)e_{(\lambda_{l-1},\mu_{l-1})} = 0, \qquad T(E_-)e_{(\lambda_{l+1},\mu_{l+1})} = 0.$$

4 Classification of representations

Theorem 1 Every irreducible representation of the first real form is bounded

1. For every nonnegative integer m, there is a representation of dimension m+1, with $\nu = \frac{p}{4} \left(\left(\frac{(1-p^{2m})(1+p^2)}{(1+p^{2m})(1-p^2)} \right)^2 - 1 \right), \ \Delta_{\nu} = \{ f(k,x_1), -1 < k \le m+1 \};$

2. There is a family of one-dimensional representations $E_0 = \frac{p}{(p^2-1)}$; $E_+ = \lambda$;

$$E_{-}=\bar{\lambda}; \lambda \text{ is complex, } \nu=\frac{p^3}{(1-p^2)^2};$$

3. For every $\nu \in \left[\frac{p^3}{(1-p^2)^2}; +\infty\right)$, there is a representation with the upper weight $\Delta_{\nu} = \{f(k, x_2), \ k < 1\};$

4. For every
$$nu \in \left[\frac{p^3}{(1-p^2)^2}; +\infty\right)$$
, there is a representation with the lower weight: $\Delta_{\nu} = \{f(k, x_1), k < 1\}.$

In the theorem, we have used notation

$$f(k,x) = \frac{1}{p^{2k}} \left(x + \frac{p^{2k} - 1}{p^2 - 1} p \right);$$
 $g_{\nu}(x) = -x - p^{-1} x^2 + \nu,$

were $x_1 < x_2$ are roots of the equation $g_{\nu}(x) = 0$.

Theorem 2 There are bounded and unbounded irreducible representations of the second real form in an infinite-dimensional Hilbert space, except for a one-dimensional representation.

1. All bounded irreducible representations have the upper weight

$$\nu \in \left[-\frac{p}{4}; \frac{p^3}{(1-p^2)^2} \right), \qquad \Delta_{\nu} = \{ f(k, x_1), k < 1 \};$$

- 2. Unbounded irreducible representations:
 - (a) There are two families with the upper weight first family:

$$\nu \in \left(-\frac{p}{4} ; 0\right), \qquad \Delta_{\nu} = \{f(k, x_2), k < 1\}$$

second family:

$$\nu \in \left(\frac{p^3}{(1-p^2)^2}; +\infty\right), \qquad \Delta_{\nu} = \{f(k, x_1), k > -1\}$$

(b) There are two families with the lower weight first family:

$$\nu \in \left[\frac{p}{4}; 0\right), \qquad \Delta_{\nu} = \{f(k, x_2), k > -1\}$$

second family:

$$\nu \in \left(\frac{p^3}{(1-p^2)^2}; +\infty\right), \qquad \Delta_{\nu} = \{f(k, x_1), k > -1\}$$

S. Popovych

(c) There are two families without the upper and lower weights: first family is numerated by the set

$$\tau = \{(\lambda, \nu) : \lambda \in \left(-p ; -\frac{p}{2}\right) \cup \left(-\frac{p}{2} ; 0\right], \nu \in (-\infty ; \lambda(\lambda + p)p^{-1})\}$$
$$\Delta_{(\lambda, \nu)} = \{f(k, \lambda), k \in \mathbb{Z}\}$$

second family is numerated by the set

$$\epsilon = [-p^{-2}; -p-1) \times (-\infty; p^3(1-p^2)^{-1}), \quad \Delta_{(\lambda,\nu)} = \{f(k,\lambda), k \in \mathbb{Z}\}.$$

References

- Witten E., Gauge theories, vertex models, and quantum groups, J. Reports. Nuclear. Phys., 1990, V.B330, 285–346.
- [2] Zachos C., Elementary paradigms of quantum algebras, J. Contemporary Mathematics, 1992, V.134.
- [3] Ostrovskii V.L. and Samoĭlenko Yu.S., Unbounded operetors satisfying non-Lie commutation relations, J. Reports. Math. Phys., 1989, V.28, 91–103.