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Abstract

Proceeding from the nonstandard q-deformed algebras U ′
q(son+1) and their finite-

dimensional representations in a q-analog of the Gel’fand-Tsetlin basis, we obtain,
by means of the contraction procedure, the corresponding q-deformed inhomogeneous
algebras U ′

q(ison) in a uniform fashion for all n ≥ 2 as well as their infinite-dimensional
representations.

1. Introduction

Lie algebras of inhomogeneous orthogonal or pseudoorthogonal Lie groups are important
for various problems of theoretical and mathematical physics. Recently, certain efforts
were devoted to the problem of constructing quantum, or q-deformed, analogs of inhomo-
geneous (Euclidean) algebras [1–3]. Practically, all these works exploit as starting point
the standard deformations Uq(Br), Uq(Dr), given by Jimbo and Drinfeld [4], of Lie alge-
bras of the orthogonal groups SO(2r + 1) and SO(2r). In addition to the fact that most
of papers [1–3] concern Euclidean algebras of low dimension 2, 3, 4, their q-analogs may be
examined from the viewpoint of (non-)possessing the following two characteristic features:

(i) after deformation, a rotation subalgebra remains closed;
(ii) both rotation and translation subalgebras in the q-analog are nontrivially deformed.
Examination shows that a rotation subalgebra may become nonclosed within a specific

approach (cf. Celeghini et al. in [2]) to q-deformation; moreover, in most of the examples of
q-deformed Euclidean algebras [1–3], either the whole (rotation or translation) subalgebra
remains nondeformed (i.e., coincides with classical one) or at least some from the set of
translations are still commuting.

The purpose of this contribution is to describe a certain nonstandard version of the q-
deformed inhomogeneous algebras Uq(ison) (i.e., q-Euclidean algebras) as well as their rep-
resentations, obtained by a simple contraction procedure from the nonstandard q-deformed
algebras U ′

q(son+1), and their representations which were proposed and studied in [5]. As
will be seen, our q-analogs are obtained in a uniform fashion for all values n ≥ 2, and
the same concerns their representations. Other viable features are: the homogeneous
(rotation) subalgebra remains closed and becomes completely deformed; moreover, the
translation generators are all mutually noncommuting (in fact, they q-commute).
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2. q-Deformed inhomogeneous algebras U ′
q(ison)

The well-known connection of the inhomogeneous (Euclidean) algebras iso(n) to the Lie
algebras so(n + 1) of orthogonal Lie groups performed by means of the procedure of
contraction [6] is applied here to the non-standard q-deformed algebras U ′

q(son+1) (studied
in [5]) in order to obtain the corresponding version U ′

q(ison) of q-deformed inhomogeneous
algebras.

A. Nonstandard q-deformed algebras U ′
q(son+1)

We consider a q-deformation of the orthogonal Lie algebras so(n,C) that essentially differs
from the standard quantum algebras Uq(Br), Uq(Dr) given by Jimbo and Drinfeld [4]. It
is known that, in order to describe explicitly finite-dimensional irreducible representations
(irreps) of the q-deformed algebras Uq(so(n,C)) and their compact real forms, one needs
a q-analog of the Gelfand-Tsetlin (GT) basis and the GT action formulas that require
the existence of canonical embeddings q-analogous to the chain so(n,C) ⊃ so(n− 1, C) ⊃
· · · ⊃ so(3, C). Evidently, such embeddings do not hold for the standard quantum algebras
Uq(Br) and Uq(Dr). Another feature is the restricted set of possible noncompact real
forms admitted by Drinfeld-Jimbo’s q-algebras, which exclude the Lorentz signature in
multidimensional cases. On the contrary, the nonstandard q-deformation U ′

q(so(n,C))
does admit [5] all noncompact real forms that exist in the classical case. Moreover, validity
of the chain of embeddings Uq(so(n, 1)) ⊃ Uq(so(n)) ⊃ Uq(so(n − 1)) ⊃ · · · ⊃ Uq(so(3))
allows us to construct and analyze infinite-dimensional representations of the q-Lorentz
algebras U ′

q(son,1).
According to [5], the nonstandard q-deformation U ′

q(so(n,C)) of the Lie algebraso(n,C)
is given as a complex associative algebra with n− 1 generating elements I21, I32, . . . , In,n−1

obeying the defining relations (denote q + q−1 ≡ [2]q)

I2
j,j−1Ij−1,j−2 + Ij−1,j−2I

2
j,j−1 − [2]q Ij,j−1Ij−1,j−2Ij,j−1 = −Ij−1,j−2, (1)

I2
j−1,j−2Ij,j−1 + Ij,j−1I

2
j−1,j−2 − [2]q Ij−1,j−2Ij,j−1Ij−1,j−2 = −Ij,j−1, (2)

[Ii,i−1, Ij,j−1] = 0 if | i− j |> 1. (3)

The compact and noncompact (of the Lorentz signature) real forms Uq(son)and Uq(son−1,1)
are singled out from the complex q-deformed algebra Uq(so(n,C)) by means of appropriate
∗-structures [5] which read in the compact case:

I∗j,j−1 = −Ij,j−1, j = 2, . . . , n. (4)

Besides the definition in terms of trilinear relations, one can also give a ’bilinear’
presentation (useful for comparison to other approaches). To this end, one introduces the
generators (here, k > l + 1, 1 ≤ k, l ≤ n)

I±k,l ≡ [Il+1,l, I
±
k,l+1]q±1 ≡ q±1/2Il+1,lI

±
k,l+1 − q∓1/2I±k,l+1Il+1,l

together with Ik+1,k ≡ I+
k+1,k ≡ I−k+1,k. Then (1)–(3) imply

[I+
lm, I

+
kl]q = I+

km, [I+
kl, I

+
km]q = I+

lm, [I+
km, I

+
lm]q = I+

kl if k > l > m,

[I+
kl, I

+
mn] = 0 if k > l > m > n or if k > m > n > l;

[I+
kl, I

+
mn] = (q − q−1)(I+

lnI
+
km − I+

knI
+
ml) if k > m > l > n.

(5)
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An analogous set of relations is obtained for I−kl combined with q → q−1 (denote this
alternative set by (5′)). When q → 1, i.e., in the ’classical’ limit, both relations (5) and
(5′) go over into those of so(n+ 1).

B. Contraction of Uq(son+1) into Uq(ison) in terms of trilinear relations

To obtain the deformed algebra Uq(ison), we apply the contraction procedure in its usual
form [6] first to the q-deformed algebra Uq(son+1) given in terms of the trilinear relations
(1)–(3): replacing In+1,n → ρ Pn, with the trivial replacement Ik+1,k → Ĩk+1,k for 1 ≤ k ≤
n− 1, and sending ρ → ∞, we arrive at the relations [7]

Ĩ2
n,n−1Pn + PnĨ

2
n,n−1 − [2]q Ĩn,n−1PnĨn,n−1 = −Pn, (6)

P 2
n Ĩn,n−1 + Ĩn,n−1P

2
n − [2]q PnĨn,n−1Pn = 0, (7)

[Ĩk,k−1, Pn] = 0 if k < n, (8)

which together with the rest of relations (that remain intact and form the subalgebra
U ′

q(son) ) define the q-deformed inhomogeneous algebra U ′
q(ison). Of course, this real

form of the complex inhomogeneous algebra U ′
q(iso(n,C) requires that the involution

I∗j,j−1 = −Ij,j−1, j = 2, . . . , n, P ∗
n = −Pn, (9)

be imposed (compare with (4)).
Observe that in the formulation just given, we have only a single (’senior’) component of

translation generators. The whole set of translations emerges when one uses the ’bilinear’
approach discussed right below.

C. Contraction into U ′
q(ison) of the bilinear version of U ′

q(son+1)

Now let us contract relations (5), (5′). Set I±n+1,k = ρ P±
k for 1 ≤ k ≤ n as well as I±kl = Ĩ±kl

for 1 ≤ l < k ≤ n , and then send ρ → ∞. As a result, we get the equality

[P±
l , P

±
m ]q±1 = 0, 1 ≤ m < l ≤ n, (10)

as well as the rest of relations that remain unchanged (formally, i.e., modulo replacement
I±kl → Ĩ±kl and I±n+1,k → P±

k ): those which form the subalgebra U ′
q(son) and those which

characterize the transformation property of P±
k with respect to U ′

q(son).
If q → 1, the set of relations defining U ′

q(ison) turns into commutation relations of the
’classical’ algebra iso(n). In what follows, we shall omit tildas over Ikl and the prime in
the notation of q-deformed algebras.
Remark 1. The algebra Uq(ison) contains the subalgebra Uq(son) in canonical way, i.e.,
similarly to the embedding of nondeformed algebras: so(n) ⊂ iso(n).
Remark 2. The generators of translations in Uq(ison) are noncommuting: as seen from
(10), they q-commute.
Remark 3. It can be proved that the element

C2(Uq(ison)) ≡
n∑

k=1

([2]/2)k−1 (1/2){P+
k , P

−
k }
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is central for the inhomogeneous q-algebra Uq(ison). When q → 1, it reduces to the
Casimir C2 of the classical iso(n).

Let us quote examples of Uq(ison) for small values n = 2, 3.
n = 2

[I21, P2]q = P+
1 [P+

1 , I21]q = P2 [P2, P
+
1 ]q = 0 (11)

n = 3

[I21, I32]q = I+
31 [I21, P3] = 0

[I32, I+
31]q = I21 [I32, P+

1 ] = 0

[I+
31, I21]q = I32 [I+

31, P
+
2 ] = (q − q−1)(P+

1 I32 − P3I21)

(12)

[I32, P3]q = P+
2 [I21, P+

2 ]q = P+
1 [I+

31, P3]q = P+
1

[P+
2 , I32]q = P3 [P+

1 , I21]q = P+
2 [P+

1 , I
+
31]q = P3

[P3, P
+
2 ]q = 0 [P+

2 , P
+
1 ]q = 0 [P3, P

+
1 ]q = 0

(13)

Remark 4. The Euclidean q-algebra Uq(iso3) contains the homogeneous subalgebra
Uq(so3), given by the left column in (12), isomorphic to the (cyclically symmetric, Carte-
sian) q-deformed Fairlie-Odesskii algebra [8]. Besides, three columns in (13) represent three
distinct inhomogeneous subalgebras of Uq(iso3), each isomorphic to Uq(iso2), conf. (11).
This feature extends to higher n: the algebra Uq(ison) contains n distinct subalgebras
isomorphic to Uq(ison−1).

3. Representations of inhomogeneous algebras Uq(ison)

We proceed with finite-dimensional representations of the algebras Uq(son+1). These
representations denoted by Tmn+1 are given by ’highest weights’ mn+1 consisting of [n+1

2 ]
components m1,n,m2,n, . . . ,m[n+1

2 ],n+1 (here [r] means the integer part of r) which are all
integers or all half-integers satisfying the dominance conditions

m1,2k+1 ≥ m2,2k+1 ≥ . . . ≥ mk,2k+1 ≥ 0 if n = 2k, (14)

m1,2k ≥ m2,2k ≥ . . . ≥ mk−1,2k ≥ |mk,2k| if n = 2k − 1. (15)

When restricted to subalgebra Uq(son), the representation Tmn+1 contains with multiplicity
1 those and only those irreps Tmn for which the inequalities (’branching rules’) similar to
the nondeformed case [9] are satisfied:

m1,2k+1 ≥ m1,2k ≥ m2,2k+1 ≥ m2,2k ≥ . . . ≥ mk,2k+1 ≥ mk,2k ≥ −mk,2k+1, (16)

m1,2k ≥ m1,2k−1 ≥ m2,2k ≥ m2,2k−1 ≥ . . . ≥ mk−1,2k−1 ≥| mk,2k | . (17)

For a basis in the representation space, we take (q-analogue of) the GT basis [9]. Its
elements are labelled by the GT schemes

{ξn+1} ≡ {mn+1,mn, . . . ,m2} ≡ {mn+1, ξn} ≡ {mn+1,mn, ξn−1} (18)

and denoted as |{ξn+1}〉 or simply |ξn+1〉.
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We use the notation [x] ≡ qx − q−x

q − q−1
for the q-number corresponding to a real number

x. In what follows, q is not a root of unity.
The infinitesimal generator I2k+1,2k in the representation Tm2k+1

of Uq(so2k+1) acts
upon the basis elements (18) according to (here β ≡ ξn−1)

Tm2k+1
(I2k+1,2k)|m2k+1,m2k, β〉 =

k∑
j=1

Aj
2k(m2k)|m2k+1,m

+j
2k , β〉

−
k∑

j=1

Aj
2k(m

−j
2k )|m2k+1,m

−j
2k , β〉

(19)

and the generator I2k,2k−1 in the representation Tm2k
of Uq(so2k) acts as

Tm2k
(I2k,2k−1)|m2k,m2k−1, β〉 =

k−1∑
j=1

Bj
2k−1(m2k−1)|m2k,m

+j
2k−1, β〉

−
k−1∑
j=1

Bj
2k−1(m

−j
2k−1)|m2k,m

−j
2k−1, β〉+ i C2k−1(m2k−1)|m2k,m2k−1, β〉.

(20)

In these formulas, m±j
n means that the j-th component mj,n of the highest weight mn is

to be replaced by mj,n ± 1; matrix elements Aj
2k, Bj

2k−1, C2k−1 are given in terms of
’l-coordinates’ lj,2k+1 = mj,2k+1 + k − j + 1, lj,2k = mj,2k + k − j by the expressions

Aj
2k(ξ) =

(
[lj,2k][lj,2k + 1]
[2lj,2k][2lj,2k + 2]

) 1
2

∣∣∣∣∣∣∣∣∣

k∏
i=1

[li,2k+1 + lj,2k][li,2k+1 − lj,2k − 1]

k∏
i�=j

[li,2k + lj,2k][li,2k − lj,2k]

×

k−1∏
i=1

[li,2k−1 + lj,2k][li,2k−1 − lj,2k − 1]

k∏
i�=j

[li,2k + lj,2k + 1][li,2k − lj,2k − 1]

∣∣∣∣∣∣∣∣∣

1
2

,

(21)

Bj
2k−1(ξ) =

∣∣∣∣∣∣∣∣∣

k∏
i=1

[li,2k + lj,2k−1][li,2k − lj,2k−1]

[2lj,2k−1 + 1][2lj,2k−1 − 1]
k−1∏
i�=j

[li,2k−1 + lj,2k−1][li,2k−1 − lj,2k−1]

×

k−1∏
i=1

[li,2k−2 + lj,2k−1][li,2k−2 − lj,2k−1]

[lj,2k−1]2
k−1∏
i�=j

[li,2k−1 + lj,2k−1 − 1][li,2k−1 − lj,2k−1 − 1]

∣∣∣∣∣∣∣∣∣

1
2

,

(22)

C2k−1(ξ) =

k∏
s=1

[ls,2k]
k−1∏
s=1

[ls,2k−2]

k−1∏
s=1

[ls,2k−1][ls,2k−1 − 1]
. (23)
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The detailed proof that the representation operators defined by (19)–(23) satisfy the
basic relations (1)–(3) of the algebra Uq(son) for n = 2k + 1 and n = 2k is given in [10].
It can be verified that the ∗-condition T (Ij,j−1)∗ = −T (Ij,j−1), j = 2, . . . , n+ 1 (compare
with (4)), for representation operators given in (19)-(23) is fulfilled if q ∈ R or q = exp ih,
h ∈ R. Therefore, the action formulas for Tmn+1(In+1,n) together with similar formulas
for the operators Tmn+1(Ii,i−1), i < n + 1, give irreducible infinitesimally unitary (or ∗-)
representations of the algebra Uq(son+1).

Representations of Uq(ison)

Representations of inhomogeneous algebras Uq(ison) are obtained from the representations
of Uq(son+1) given above in a manner similar to that followed by Chakrabarti [6] for
obtaining irreps of Euclidean algebras iso(n) from finite-dimensional irreps of rotation
algebras so(n+ 1).

The representations of Uq(ison) are characterized by a complex number a and the set
m̃n+1 ≡ {m2,n+1,m3,n+1, . . . ,m[n+1

2 ],n+1} of numbers which are all integers or all half-
integers. Due to validity of the chain of inclusions

Uq(ison) ⊃ Uq(son) ⊃ . . . ⊃ Uq(so4) ⊃ Uq(so3), (24)

the representation space Va,m̃n+1 for a representation of Uq(ison) is taken as a direct sum
of the representation spaces of the q-rotation subalgebra Uq(son) given by mn, whose
components m2,n, . . . ,m[n

2
],n satisfy the inequalities (16)-(17) and the first component

m1,n is bounded only from below, ∞ ≥ m1,n ≥ m2,n+1. In this way, one is led to infinite-
dimensional representations of the inhomogeneous algebras Uq(ison).

The representation operators Ta,m̃2k+1
(Ij,j−1) that correspond to the generators Ij,j−1

of the compact subalgebra Uq(son) act according to formulas coinciding with (19)–(23).
The representation operator Ta,m̃2k+1

(P2k) which corresponds to the translation genera-
tor P2k of the algebra Uq(iso2k) acts upon basis elements (12) according to (here β ≡ ξn−1)

Ta,m̃2k+1
(P2k)|m̃2k+1,m2k, β〉 =

k∑
j=1

Aj
2k(m2k)|m̃2k+1,m

+j
2k , β〉

−
k∑

j=1

Aj
2k(m

−j
2k )|m̃2k+1,m

−j
2k , β〉

(25)

and the representation operator Ta,m̃2k
(P2k−1) which corresponds to the translation gen-

erator P2k−1 of the algebra Uq(iso2k−1) acts as

Ta,m̃2k
(P2k−1)|m̃2k,m2k−1, β〉 =

k−1∑
j=1

Bj
2k−1(m2k−1)|m̃2k,m

+j
2k−1, β〉

−
k−1∑
j=1

Bj
2k−1(m

−j
2k−1)|m̃2k,m

−j
2k−1, β〉+ i C2k−1(m2k−1)|m̃2k,m2k−1, β〉

(26)
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where

Aj
2k(ξ) = a

(
[lj,2k][lj,2k + 1]
[2lj,2k][2lj,2k + 2]

) 1
2

∣∣∣∣∣∣∣∣∣

k∏
i=2

[li,2k+1 + lj,2k][li,2k+1 − lj,2k − 1]

k∏
i�=j

[li,2k + lj,2k][li,2k − lj,2k]

×

k−1∏
i=1

[li,2k−1 + lj,2k][li,2k−1 − lj,2k − 1]

k∏
i�=j

[li,2k + lj,2k + 1][li,2k − lj,2k − 1]

∣∣∣∣∣∣∣∣∣

1
2

,

(27)

Bj
2k−1(ξ) = a

∣∣∣∣∣∣∣∣∣

k∏
i=2

[li,2k + lj,2k−1][li,2k − lj,2k−1]

[2lj,2k−1 + 1][2lj,2k−1 − 1]
k−1∏
i�=j

[li,2k−1 + lj,2k−1][li,2k−1 − lj,2k−1]

×

k−1∏
i=1

[li,2k−2 + lj,2k−1][li,2k−2 − lj,2k−1]

[lj,2k−1]2
k−1∏
i�=j

[li,2k−1 + lj,2k−1 − 1][li,2k−1 − lj,2k−1 − 1]

∣∣∣∣∣∣∣∣∣

1
2

,

(28)

C2k−1(ξ) = a

k∏
s=2

[ls,2k]
k−1∏
s=1

[ls,2k−2]

k−1∏
s=1

[ls,2k−1][ls,2k−1 − 1]
. (29)

The representation operators given by formulas (25)–(29) (together with formulas (19)–
(23) for the subalgebra Uq(son)) can be proved to satisfy the defining relations (6)–(8), in
complete analogy to the proof [10] in the case of homogeneous algebra Uq(son). Moreover,
it can be verified that these representations are ∗-representations (satisfy ∗-relations (9)),
for q real or the pure phase if a is real in formulas (25)–(29).

4. Class 1 representations of the inhomogeneous algebra
Uq(ison)

We use the term class 1 (or C1)representation for those representations of either Uq(son+1)
or Uq(ison) which contain the trivial (identical) representation of the maximal compact
subalgebra Uq(son). Note that among representations of Uq(so3) all irreps Tl are given by
an integer l and only these are C1 representations with respect to the Abelian subalgebra
generated by I21.

The particular case Ta (C1 representations of Uq(ison) characterized by a single complex
number a) was considered in [11]. These special representations are obtainable from our
general formulas (19)–(23), (25)–(29) if we set m2,n+1 = m3,n+1 = · · · = m[n+1

2 ],n+1 = 0.
The carrier space Va of Ta is composed of carrier spaces Vmn of irreps Tmn of the

subalgebra Uq(son) with the signatures (m1,n, 0, . . . , 0), ∞ ≥ m1,n ≥ 0 (which in turn are
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C1 irreps w.r.t. Uq(son−1)). Accordingly, the basis in Va is composed as the union of G-T
bases of such subspaces Vmn . We denote basis elements in the representation space Vmn

by |mn,mn−1, · · · ,m3,m2〉.
The operator Ta(I21) and operators Ta(Ii,i−1), 3 ≤ i ≤ n, representing generators of

subalgebra Uq(ison) act in this basis by the formulas

Ta(I21)|mn,mn−1, . . . ,m2〉 = i[m2]|mn,mn−1, . . . ,m2〉,
Ta(Ii,i−1)|mn,mn−1, . . . ,m2〉 =

=
(
[m(+)

i + i− 2][m(−)
i ]

)1/2
R(mi−1)|mn, . . . ,mi−1 + 1, . . . ,m2〉

−
(
[m(+)

i + i− 3][m(−)
i + 1]

)1/2
R(mi−1 − 1)|mn, . . . ,mi−1 − 1, . . . ,m2〉,

(30)

where m(±)
i ≡ mi ±mi−1 and

R(mi) =

(
[m(+)

i + i− 2][m(−)
i + 1]

[ 2 mi + i− 2][ 2 mi + i]

)1/2

.

The operator Ta(Pn) of the representation Ta of Uq(ison), n ≥ 2, corresponding to the
translation Pn is given by the formula

Ta(Pn)|mn,mn−1, · · · ,m2〉 = a R(mn)|mn + 1,mn−1,mn−2, · · ·m2〉
−a R(mn − 1)|mn − 1,mn−1,mn−2, · · · ,m2〉

(31)

In summary, we have presented the nonstandard q-deformed inhomogeneous algebras
Uq(ison) defined in a uniform manner for all n ≥ 2, for which both ’trilinear’ and ’bilinear’
presentations were given. All the infinite-dimensional representations of Uq(ison) that
directly correspond to well-known irreducible representations of the classical limit ison are
obtained and illustrated with the particular case of class 1 irreps. It is an interesting task
to analyze Uq(ison) representations for cases where discrete components characterizing
representations are not all integers or all half-integers as well as the cases of q being roots
of 1.
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