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Abstract

Application of the twisted generalized Weyl construction to description of irreducible
representations of the algebra generated by two idempotents and a family of graded-
commuting selfadjoint unitary elements which are connected by relations of commuta-
tion and anticommutation is presented. It’s also discussed ∗-representations and the
theory of cubic deformation A+

pq(3, 1) of the enveloping algebra su(2).

1 Introduction.

In the last few years, quantum groups, different q-deformations of the universal algebra
of Lie algebras, their Z2-graded analogs, superalgebras and quantum superalgebras have
attracted more interest and play an important role in various branches of modern physics.
For applications, in particular in particle physics, knot theory, supersymmetric models
and others, it is desirable to have a well-developed representation theory.

The purpose of this paper is to study ∗-representations of some nonlinear deformation
of the enveloping algebra su(2) and the algebra generated by two idempotents, and a
family of graded-commuting selfadjoint elements which are connected by relations of com-
mutation and anticommutation. Namely, in Section 2, we study representations of a cubic
deformation of su(2) such as Witten’s deformation A+

pq(3, 1) [4]. This algebra and their
∗-representations have recently been studied in connection with some physically interest-
ing applications (see [2, 3, 4] and references therein). There are some other non-linear
generalizations of su(2) intensively studied in the literature and worth to mention here: in
particular, the quantum algebra suq(2) [23], Witten’s first deformation [27, 19], the Higgs
algebras [7, 1], the Fairlie q-deformation of so(3) [6, 22], nonlinear sl(2) algebras [1] and
others. Our purpose is to describe all irreducible representations of the algebra A+

pq(3, 1)
by bounded and unbounded operators. The method of solving this problem is based on
the study of some dynamical system. The important point to note here that this method
allows us to give a complete classification of representations, up to a unitary equivalence,
in the class of “integrable” representations and it can be applied, in particular, to the
study of ∗-representations of the Higgs algebra [7] and other nonlinear sl(2) algebras [1].
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Using some generalization of this method, in Section 3, we will study collections of
unitary graded-commuting selfadjoint operators (γk)nk=1 which commute or anticommute
with a pair of unitary selfadjoint operators u, v. Note that these operators determine rep-
resentations of the ∗-algebra which can be considered as an algebra obtained by the twisted
generalized Weyl construction investigated in [12]. The study of their representations can
be reduced to the study of a dynamical system on the set of irreducible representations
of some noncommutative subalgebra. Such methods of studying representations by using
dynamical systems go back to the classical papers [5, 11, 17, 24]. In particular, they have
been developed and extended to the families of operators satisfying relations of some spe-
cial type (see [13, 16, 25, 26]), and then applied for the study of many objects important
in mathematical physics ([14, 15] and references therein).

The paper is organized as follows: in Section 2, we describe briefly the method of
dynamical systems and study ∗-representations of the algebra A+

pq(3, 1). In Section 3, we
review some facts on twisted generalized Weyl constructions. Then, using these results and
results on representations of commutative Lie superalgebras ([21]), we will give a complete
classification of irreducible representations of the algebra generated by unitary selfadjoint
elements u, v and the collection of unitary graded-commuting selfadjoint elements (γk)nk=1

which are connected with each other by the relations of commutation or anticommutation.
Families of unitary selfadjoint operators and families of idempotents in the algebra of
bounded operators in a Hilbert space were studied, in particular, in [9, 10].

2 Representations of a cubic deformation of su(2)

2.1 Representations of commutation relations and dynamical systems

Consider the operator relation

AkB = BFk(A), (k = 1, . . . , n), (1)

where A = (Ak)nk=1 is a family of selfadjoint, generally speaking, unbounded operators
in a complex separable Hilbert space H, Fk(·) is a real measurable function on Rn. The
method of study of operators satisfying (1) was developed in [13, 25, 26]. It has the origin
in the theory of imprimitivity and induced representations of groups ([11]), on the other
hand, in the theory of C∗-products and their representations ([5, 17, 24]). At the same
time, this method has some new aspects which allow us to study many objects appearing
in mathematical physics (see [15]).

We allow the operators A, B to be unbounded. Thus, we have to make precise the
sense in which relations (1) hold.
We call the operators A = (Ak)nk=1 and B a representation of (1) if

EA(∆)U = UEA(F−1(∆)), [E|B|(∆′), EA(∆)] = 0, ∆ ∈ B(Rn), ∆′ ∈ B(R), (2)

where F(·) = (F1(·), . . . , Fn(·)) : Rn → Rn, EA(·) is a joint resolution of the identity for
the commuting family A, B = U |B| is a polar decomposition of the closed operator B.

For bounded Ak, B, this definition and the usual pointwise definition are equivalent.
We will say that the representation (A, B) is irreducible if any bounded operator such
that CX ⊆ XC, C∗X ⊆ XC∗, where X is one of the operators Ak, B, B∗, is a multiple
of the identity operator.
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The important role in the study of the commutation relations (1) is played by the
dynamical system (d.s.) on Rn generated by F. We will assume that F is bijective. It
follows from (2) that for any F-invariant set ∆, the operator EA(∆) is a projection on an
invariant subspace. If the dynamical system is simple, i.e., there exists a measurable set
intersecting every orbit of the dynamical system exactly at one point, then any irreducible
representation arises from an orbit of d.s., i.e., the spectral measure of the family A is
concentrated on an orbit. We restrict ourselves by considering only this case.

If no conditions are imposed on the operator B, then the problem of unitary clas-
sification of all families (A, B) is a very difficult problem. It contains as a subproblem
the problem of unitary classification of pairs of selfadjoint operators without any relations
(see [18, 10]). We will assume that the operators B, B∗ are additionally connected by the
relation

B∗B = ϕ(A, BB∗), (3)

where ϕ(·) : Rn+1 → R is a continuous function. If the operators A, B, B∗ are bounded,
(3) is equivalent to the following equality

|B|2U = UFn+1(A, |B|2) (4)

with Fn+1(x1, . . . , xn+1) = ϕ(F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn), xn+1). Relation (4) is of
the form (1), hence we can give a definition of unbounded representations of relations (1)
and (3). Note that the assumed condition implies the following relations for the operator
U : operators U l(U∗)l, (U∗)lU l, l = 1, 2, . . . form a commuting family (i.e., the operator U
is centered).

The complete classification of all irreducible families (A, B,B∗) satisfying (1), (3) was
given in [25]. Moreover, there was proved the structure theorem which defines the form
of any such operators as a direct sum or a direct integral of irreducible ones. Let

F(x1, . . . , xn+1) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn), Fn+1(x1, . . . , xn+1)

be bijective. By [25], if the dynamical system is simple, any irreducible representation of
relations (1), (3) arises from certain subsets of an orbit of the dynamical system on Rn+1

generated by F . Namely, any irreducible representation is unitarily equivalent to one of
the following:

Akex = xkex, Bex =
√
xn+1u(x)eF(x), x = (x1, . . . , xn+1) ∈ Ω0,

where Ω0 is a connected subset of some orbit of the dinamcal system on Rn+1 generated
by F [16].

2.2 Representations of the cubic deformation A+
pq(3, 1) of su(2)

The ∗-algebra A+
pq(3, 1) was introduced by Delbeq and Quesne ([4]) as a two-parameter

nonlinear cubic deformation of su(2). It is generated by generators J0, J+, J− satisfying
the relations:

[J0, J+] = (1 + (1− q)J0)J+, [J0, J−] = −J−(1 + (1− q)J0),

[J+, J−] = 2J0(1 + (1− q)J0)(1 − (1 − p)J0),
(5)
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with involution defined as follows: J∗
0 = J0, J∗

+ = J−. We will assume that 0 < p < 1,
0 < q < 1.

This algebra has a Casimir operator

C = J−J+ +
2(q − 1)

(q + 1)(q3 − 1)
J0(J0 + 1)(1 + (p + q)q − (1 − p)(1 + q)J0).

Representations of the ∗-algebra A+
pp(3, 1) were classified in [4]. In this paper we allow

parameters p, q to be different.
It is clear that bounded representations of the ∗-algebra are defined by their value

on the generators, i.e., operators J∗
0 = J0, J+ ∈ L(H) satisfying (5). An unbounded

representation of A+
pq(3, 1) is defined to be formed by unbounded operators J∗

0 = J0, J+

satisfying (1), (3) in the sense of the definition given in the previous subsection. It follows
from the definition that the spectral projections of the Casimir operator C commute with
the generators of the algebra, i.e., EC(∆)A ⊆ AEC(∆), where A is one of the operators
J0, J+, J∗

+ and ∆ ∈ B(R). Thus, given an irreducible triple (J0, J+, J−), the operator C
is a multiple of the identity operator: C = µI, where µ ∈ R. Moreover,

J0J+ = q−1J+(J0 + 1), J∗
+J+ = g(J0, µ), (6)

where g(x, µ) = µ− 2(q − 1)
(q + 1)(q3 − 1)

x(x + 1)(1 + (p + q)q − (1 − p)(1 + q)x).

Conversely, any irreducible representation of the algebra generated by J0 = J∗
0 , J+, J∗

+

and relations (6) which is defined on a Hilbert space H, dimH ≥ 2, is an irreducible repre-
sentation of A+

pq(3, 1) (see [20], Lemma 1). In what follows, we will study representations
of relations (6).

To (6) there corresponds the dynamical system generated by F(x, y) = (q−1(x +
1), g(q−1(x + 1), µ)) : R2 → R2. It has the measurable section τ = ([q−1(δ1 + 1), δ1) ∪{

1
q − 1

}
∪ (δ2, q

−1(δ2 + 1)])× R, where δ1 <
1

q − 1
< δ2. Thus, any irreducible represen-

tation arises from an orbit of the dynamical system and can be described by the formulae
given above. It is easy to show that any orbit of the dynamical system is of the form

Ωx =
{
(q−n

(
x− 1

q − 1

)
+

1
q − 1

, g

(
q−n

(
x− 1

q − 1

)
+

1
q − 1

, µ

)
| n ∈ Z

}
.

In the sequel we will denote the point of the orbit by (f1(x, µ, n), f2(x, µ, n)). It depends
on a behavior of the function g(x, µ) what kind of representations relations (6) will have.
Since the calculations are rather lengthy, we leave them out and state the final result. For
the deeper discussion, we refer the reader to [20]. First, let us introduce some notations.

Denote by x1(µ) ≤ x2(µ) ≤ x3(µ) the real roots of the equation g(x, µ) = 0. Let
a = 1 + (p + q)q, b = (1 − p)(1 + q), γ(p, q) = ab−1. Then

ε1(p, q) =
a− b +

√
a2 + b2 + ab

3b
, ε2(p, q) =

a− b−√
a2 + b2 + ab

3b
are the extreme points of g(x, µ). Write y1(p, q) = ming(x, 0) ≡ g(ε1(p, q), 0), y2(p, q) =

maxg(x, 0) ≡ g(ε2(p, q), 0) and ψ(µ, p, q) =
x3(µ) − (q − 1)−1

x2(µ) − (q − 1)−1
. Then

max
µ∈[−y2(p,q),−y1(p,q)]

ψ(µ, p, q) =
ab−1 − 1− 2ε2(p, q) − (q − 1)−1

ε2(p, q) − (q − 1)−1
,

which will be denoted by ψ(p, q).
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Below we give a list of irreducible representations of the ∗-algebra A+
pq(3, 1):

1. one-dimensional representations: J0 = (q − 1)−1, J+ = λ, λ ∈ C;
2. finite-dimensional representations:
a) for any p, q such that γ(p, q)− 1− 2ε1(p, q) ≤ (q − 1)−1, for any n ≥ 2, there exists

the representation of the dimension n + 1 with Ω0 = {(f1(x1(µ), µ, k), f2(x1(µ), µ, k) |
k = 0, . . . , n}, where µ is uniquely defined from the equation κ(µ, p, q) = q−n; where

κ =
x2 − (q − 1)−1

x1 − (q − 1)−1
.

b) for any p, q such that γ(p, q)−1−2ε1(p, q) > (q−1)−1, there exist the representations
of any dimension n ≤ logq−1(γ(p, q) − 1 − 2ε1(p, q)) + 1 with Ω0 = {(f1(x1(−y1(p, q)),
−y1(p, q), k), f2(x1(−y1(p, q)), −y1(p, q), k) | k = 0, . . . , n};

c) for any n ∈ N and µ ∈ R such that x1(µ) > (q − 1)−1 and qn(x3(µ) − (q − 1)−1) =
x1(µ) − (q − 1)−1 and x3(µ) < q−1(x2(µ) + 1), there exists the representation of the
dimension n + 1 with Ω0 = {(f1(x1(µ), µ, k), f2(x1(µ), µ, k) | k = 0, . . . , n};

3. representations with higher weight:
a) for any p, q such that γ(p, q)−1−2ε1(p, q) ≤ (q−1)−1, there exists the representation

with Ω0 = {(f1(x2(−y1(p, q)),−y1(p, q), k), f2(x2(−y1(p, q)), −y1(p, q), k) | k ≤ 0};
b) for any µ such that x1(µ) ≤ (q − 1)−1, there exists the representation with Ω0 =

{(f1(x2(µ), µ, k), f2(x2(µ), µ, k) | k ≤ 0};
c) for any p, q such that ψ(p, q) ≤ q−1 and µ ∈ (−y2(p, q),−y1(p, q)), there exists the

representations with Ω0 = {(f1(x3(µ), µ, k), f2(x3(µ), µ, k) | k ≤ 0};
d) for any p, q such that ψ(p, q) > q−1 and any µ ∈ (µ0,−y1(p, q)) such that x1(µ) ≤

(q − 1)−1, there exists the representation with Ω0 = {(f1(x3(µ), µ, k), f2(x3(µ), µ, k) | k ≤
0}, where µ0 is uniquely defined by the condition ψ(µ0, p, q) = q−1;

4. representations with a lower weight:
a) for any p, q and µ ∈ (−∞,−y1(p, q)), there exists the representation with Ω0 =

{(f1(x3(µ), µ, k), f2(x3(µ), µ, k) | k ≥ 0};
b) for any p, q and µ ∈ (−y1(p, q),+∞) and x1(µ) > (q − 1)−1, there exists the

representation with Ω0 = {(f1(x1(µ), µ, k), f2(x1(µ), µ, k) | k ≥ 0};
c) for any p, q such that ψ(p, q) > q−1 and µ ∈ (−y2(p, q), µ0), there exists the represen-

tation with Ω0 = {(f1(x2(µ), µ, k), f2(x2(µ), µ, k) | k ≥ 0}, where µ0 is uniquely defined
by the condition ψ(µ0, p, q) = q−1;

d) for any p, q such that ψ(p, q) < q−1, there exists the representation with Ω0 =
{(f1(x2(−y2(p, q)),−y2(p, q), k), f2(x2(−y2(p, q)), −y2(p, q), k) | k ≥ 0};

e) for any p, q and µ ∈ (−y2(p, q), µ0) such that there exists n ∈ N∪ {0} satisfying the

condition q−n <
x2(µ) − (q − 1)−1

x1(µ) − (q − 1)−1
, q−n−1 >

x3(µ) − (q − 1)−1

x1(µ) − (q − 1)−1
, we have the representa-

tion with Ω0 = {(f1(x1(µ), µ, k), f2(x1(µ), µ, k) | k ≥ 0}, where µ0 is defined as follows:
x1(µ0) = (q − 1)−1;

f) for any p, q and µ such that x1(µ) < (q − 1)−1, there is representation with Ω0 =
{(f1(x1(µ), µ, k), f2(x1(µ), µ, k) | k ≤ 0}

5. nondegenerate representations:

a) for any λ ∈
[
(2qε1(p, q) − 1)

q + 1
,
(2ε1(p, q) − 1)

q + 1

)
\ {ε1(p, q)}, if γ− 1− 2ε1 < (q− 1)−1,

then there exists the representation with Ω0 = {(f1(λ,−y1(p, q), k), f2(λ,−y1(p, q), k) |
k ∈ Z};
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b) for any λ ∈
[
(2qε1(p, q) − 1)

q + 1
,
(2ε1(p, q) − 1)

q + 1

)
\ {ε1(p, q)} and µ ∈ (µλ,−y1(p, q))

such that x1(µ) ≤ (q − 1)−1 there exists the representation with Ω0 = {(f1(λ, µ, k),
f2(λ, µ, k) | k ∈ Z}, where µλ is defined by the condition: dist({x | g(x, µλ) = 0},
ε1(p, q)) = dist({q−n(λ − (q − 1)−1) + (q − 1)−1 | n ∈ Z}, ε1(p, q)) (here dist(M,x) is the
distance between the subset M ⊆ R and x ∈ R).

3 On the structure of families of unitary selfadjoint opera-
tors

3.1 Twisted generalized Weyl construction.

Let R be a unital ∗-algebra, t = t∗ a central element and σ an automorphism such that
σ(r∗) = (σ(r))∗. Define the ∗-algebra A1

R as the R-algebra generated by two elements X,
X∗ subjected to the following relations:

• Xr = σ(r)X and rX∗ = X∗σ(r) for any r ∈ R,

• X∗X = t and XX∗ = σ(t).

We will say that the ∗-algebra A1
R is obtained from R, σ, t by the twisted generalized Weyl

construction. Such ∗-algebras were introduced in [12] and their Hilbert space representa-
tions were studied up to a unitary equivalence.

In this subsection, we set up a notation and give a brief exposition of results from [12]
which will be needed below.

Let H be a complex separable Hilbert space, L(H) denotes the set of all bounded
operators on H, M′ = {c ∈ L(H) | [c, a] = 0, a ∈ M} is the commutator of the operator
algebra M.

Assume that R is an algebra of type I, i.e., the W ∗-algebra {π(r), r ∈ R}′′ is of type I
for any representation π of R, and, given a representation π of R, the automorphism σ can
be extended to the corresponding von Neumann algebra. Let R̂ be the set of equivalence
classes of irreducible representations of R. The automorphism σ generates the dynamical
system on the set R̂. Indeed, if π is an irreducible representation of R, then so is π(σ).
Denote by Ωπ the orbit of the dynamical system, i.e., Ωπ = {π(σk), k ∈ Z}.

The next assumption will be needed throughout the section. Suppose that it is possible
to choose the subset τ ⊂ R̂ which meets each orbit just once in such a way that τ is a
Borel subset. In this case, we will say that the dynamical system R̂ � π → π(σ) ∈ R̂ is
simple. Then any irreducible representation w : A1

R → L(H) is concentrated on an orbit of
the dynamical system, i.e., H = ⊕Ω0⊂ΩπHπk

, where Hπk
is invariant with respect to w(r)

for any r ∈ R, and w|Hπk
, as a representation of R, is unitarily equivalent to π(σk) ⊗ I

(here I is the identity operator of dimension n(k) ≤ ∞). We will call Ω0 the support of
w and denote by suppw. Without loss of generality, we can assume that π ∈ Ω0. Then
Ω0 = {π(σk), k ∈ Z | π(σl(t) > 0 for any 0 ≤ l ≤ k if k ≥ 0 or k < l < 0 if k < 0}. Denote
by K̃ the subgroup of Z consisting of k ∈ Z such that π(σk) is unitarily equivalent to π
and π(σl) ∈ Ω0 for any 0 < l < k if k > 0 or 0 > l > k if k < 0.

Theorem 1 Any irreducible representation w of the ∗-algebra A1
r such that suppw = Ω0

coincides, up to a unitary equivalence, with one of the following:
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1. If K̃ = ∅, then H = ⊕Ω0Hπk

w(r)|Hπk
= π(σk(r)), X : Hπk

→ Hπk+1
, X|Hπk

=
{

π(σk(t)), π(σk+1) ∈ Ω0,
0, π(σk+1) /∈ Ω0.

2. If K̃ �= ∅ and n ∈ N is the smallest number such that π(σn) and π are unitarily
equivalent, then H = ⊕n−1

k=0Hπk

w(r)|Hπk
= π(σk(r)), X : Hπk

→ Hπk+1
, X|Hπk

=
{

π(σk(t)), k �= n− 1,
eiϕWπ(σn−1(t)), k = n− 1,

where W−1πW = π(σn), ϕ ∈ [0, 2π).

This technique can be applied to the study of many objects important in mathematical
physics such as Qij − CCR ([8]), suq(3) and others. Next section is devoted to the study
of one of them.

3.2 Representations of ∗-algebras generated by unitary selfadjoint ge-
nerators

The purpose of this subsection is to describe representations of the ∗-algebra A generated
by selfadjoint unitary generators u, v and jk (k = 1, . . . , n), and the relations

jijk = (−1)g(i,k)jkji, (7)

ujk = (−1)h(k)jku, vjk = (−1)w(k)jkv, (8)

here g(i, k) = g(k, i) ∈ {0, 1}, g(i, i) = 0, h(k), w(k) ∈ {0, 1} for any i, k = 1, . . . , n. Any
family of elements (jk)nk=1 satisfying (7) is said to be a graded-commuting family.

Any representations of A is determined by representation operators corresponding to the
generators. Thus, instead of representations of the ∗-algebra A, we will study collections
of unitary selfadjoint operators u, v, jk (k = 1, . . . , n) on a complex separable Hilbert
space H satisfying (7), (8).

We start with the study of graded-commuting selfadjoint operators J = (jk)nk=1 with
the condition j2

k = I (k = 1, . . . , n). For these operators, the structure question was solved
in [21]. We will present only main results and constructions from [21].

To collection of selfadjoint unitary operators (jk)nk=1, there corresponds a simple graph
Γ = (S,R) (without loops and multiple edges). Here S is element subsets of S corre-
sponding to the edges. The vertices ak and am are connected with an edge if {jk, jm} ≡
jkjm + jmjk = 0 and there is no edge if the operators commute. In what follows, we will
regard such a collection as selfadjoint and unitary representations of the graph Γ.

Denote by σx, σy, σz and σ0 the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, σ0 =

(
1 0
0 1

)
.

Consider the following construction of irreducible representations of the graph Γ, which
are defined inductively.
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1. If Γ =
(

a1 a2 an

· · . . . ·
)

then collections of unitary commuting selfadjoint oper-

ators form representations of the graph. Set jk = (−1)ik , where ik ∈ {0, 1}, k = 1, . . . , n,
and m(Γ) = 0. We get 2n unitarily inequivalent representations.

2. Suppose now that at least two of vertices (without loss of generality, we can assume
that these are a1, a2) are connected by an edge. In the space H = C2 ⊗ H1, consider
j1 = σz ⊗ I, j2 = σx ⊗ I, where I is the identity operator on a Hilbert space H1.

If jk commutes with j1 and j2, set jk = σ0 ⊗Bk;
if jk commutes with j1 and anticommutes with j2, set jk = σz ⊗Bk;
if jk anticommutes with j1 and commutes with j2, set jk = σx ⊗Bk;
if jk anticommutes with j1 and j2, set jk = σy⊗Bk, where (Bk)nk=3 is the representation

of the derivative graph Γ1 = (S1, R1) which is defined in the following way:
a) the graph Γ1 contains the vertices (bk)nk=3;
b) if, in the graph Γ, the vertex ak is contained in the star of the vertex a1 (i.e., it is

connected with a1 by an edge) and am is contained in the star of a2 but at least one of
them is not in both of the stars (i.e., is not connected with both vertices), then the edge
(bk, bm) ∈ R1 if (ak, am) /∈ R and conversely, (bk, bm) /∈ R1 if (ak, am) ∈ R;

c) in all other cases (bk, bm) ∈ R1 if (ak, am) ∈ R and (bk, bm) /∈ R1 if (ak, am) /∈ R.
Proceeding in such a manner at the end we find that either there exists m(Γ) ∈ N such

that all vertices of the graph Γm(Γ) are isolated and we get 2n−2m(Γ) representations of the
dimension 2m(Γ), or m(Γ) ≡ n ∈ 2N and Γm(Γ)/2 = ∅. In the last case, we get the unique
representations of the dimension 2n.

Theorem 2 A simple graph Γ with n vertices has 2r(Γ) (0 ≤ r(Γ) ≤ n) unitarily inequiv-
alent irreducible representations of the same dimension 2m(Γ) with r(Γ) = n−2m(Γ). Any
of them is unitarily equivalent to one def ined by the construction above.

It follows from Theorem 2 that any irreducible unitary selfadjoint representation of the
graph Γ is realized, up to a permutation and a unitary equivalence, on H = C2 ⊗ . . .⊗C2

by the formulae jk = ikσk1 ⊗ . . .⊗ σkm(Γ) (k = 1, . . . , n), where σkm is the Pauli matrix
contained as the m-th factor in jk, i1 = . . . = i2m(Γ) = 1, ik ∈ {0, 1} for k > 2m(Γ).

To distinguish families of unitary selfadjoint operators (jk)nk=1 satisfying (7), we will say
that (jk)nk=1 is a family of unitary graded-commuting selfadjoint operators corresponding
to g : M ×M → {0, 1}, where M = {1, 2, . . . , n}.

2. Next we describe collections (u, v, j1, . . . , jn) of selfadjoint unitary operators which
satisfy the relations:

jijk = (−1)g(i,k)jkji, (9)

ujk = (−1)h(k)jku, vjk = (−1)h(k)jkv, (10)

where g(i, k) = g(k, i) ∈ {0, 1}, g(i, i) = 0, h(k) ∈ {0, 1} for any i, k = 1, . . . , n.
They determine representations of the ∗-algebra A generated by u = u∗, v = v∗, j∗k = jk

(k = 1, . . . , n) satisfying (9), (10) and the condition u2 = v2 = j2
k = 1. Denote by A0

the subalgebra of A generated by jk, k = 1, . . . , n. The ∗-algebra A can be treated as a
∗-algebra obtained by the twisted generalized Weyl construction. Indeed, let X = u + iv,
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X∗ = u− iv. It is easy to check that relations (10) and u2 = v2 = 1 are equivalent to the
following ones:

XX∗ + X∗X = 4, X2 + (X∗)2 = 0,

Xjk = (−1)h(k)jkX, X∗jk = (−1)h(k)jkX
∗ (11)

Consider the unital ∗-algebra A0 ⊕ CX∗X as the ground ∗-algebra R with the cen-
tral element t = X∗X and the automorphism σ which is defined in the following way:
σ(X∗X) = 4 −X∗X, σ(jk) = (−1)h(k)jk, k = 1, . . . , n. Then A is ∗-isomorphic to A1

R.

Theorem 3 Any irreducible representation of A is unitarily equivalent to one of the fol-
lowing:

1. H = H0 ⊗ C2

u = I ⊗ σx v = I ⊗
(

sinϕ cosϕ
cosϕ − sinϕ

)
, jk =

{ −j′k ⊗ σy, h(k) = 1,
j′k ⊗ σ0, h(k) = 0,

(12)

where ϕ ∈ (−π, π), (j′k)
n
k=1 is an irreducible family of unitary graded-commuting selfadjoint

operators on H0 corresponding to g.
2. H = H0

jk = j′k, k = 1, . . . , n, u = j′n+1, v = j′n+2, (13)

where (j′k)
n+2
k=1 is an irreducible family of unitary graded-commuting selfadjoint operators

corresponding to g′ defined as follows:

g′(k, i) =




g(k, i), k, i ≤ n,
h(k), k ≤ n < i,
0, otherwise.

Proof. To the ∗-algebra A, there corresponds the dynamical system R̂ � π → π(σ) ∈ R̂
with σ2 = 1. Any representation π ∈ R̂ is defined by the collection (j′1, . . . , j′n, X∗X = λI),
where (j′k)

n
k=1 is an irreducible family of unitary graded-commuting selfadjoint operators

corresponding to g, and λ ∈ [0, 4]. Any irreducible representation arises from an orbit of
the dynamical system.

If λ �= 0, 2, 4, then the representations π, π(σ) are not unitarily equivalent and and
π(t), π(σ(t)) > 0, hence, by Theorem 1, the corresponding irreducible representation of
the ∗-algebra A is of the form

jk = j′k ⊗
(

1 0
0 (−1)h(k)

)
X = I ⊗

(
0 eiψ

√
4− λ√

λ 0

)
,

ψ ∈ [0, 2π), λ ∈ (0, 2). Moreover, since X2 + (X∗)2 = 0, eiψ = ±i. Thus,

u = I ⊗
(

0 eiδ

e−iδ 0

)
, v = I ⊗

(
0 ie−iδ

−ieiδ 0

)
, (14)

where λ = 4 cos2 δ, δ ∈ (−π/4, π/4).
If λ = 4, then π(σ(t)) = 0, π(t) = 4 and the corresponding irreducible representation

is of the form

jk = j′k ⊗
(

1 0
0 (−1)h(k)

)
, X = I ⊗

(
0 0
2 0

)
,
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and u = I ⊗ σx, v = I ⊗ (−σy).
If λ = 0, then π(t) = 0, π(σ(t)) = 4 and the corresponding irreducible representation

is unitarily equivalent to one given in the previous case.
It is easy to check that these representations are unitarily equivalent to that given by

(12) with the unitary operator

W =
1√
2
I ⊗

(
1 i

e−iδ −ie−iδ

)
and ϕ = 2δ.

If λ = 2, then π(t) = π(σ(t)). Hence, for the corresponding irreducible representation of
A, we have XX∗ = X∗X = 2, which is equivalent to the following [u, v] = 0, u2 = v2 = I.
The corresponding irreducible family (u, v, j1, . . . , jn) is defined by (13). Moreover, any
collection of the form (13) determines a representation of the ∗-algebra A.

3. Now consider representations of the ∗-algebra generated by u, v, jk, k = 1, . . . , n,
and relations (7), (8). Suppose that there exists k ≤ n such that h(k) �= w(k). Without
loss of generality, we can assume that h(k) = w(k) for some k ≤ s < n, h(k) �= w(k) if
s < k ≤ n and h(n) = 0, w(n) = 1. Consider the selfadjoint unitary generators

j̃k =
{

jk, k ≤ s or k = n,

ig(n,k)jkjn, s < k < n.

One can check that relations (7), (8) are equivalent to the following

j̃k j̃l = (−1)g̃(k,l)j̃lj̃k (15)

j̃ku = (−1)h̃(k)uj̃k, j̃kv = (−1)h̃(k)vj̃k, k �= n, (16)

j̃nu = uj̃n, j̃nv = −vj̃n, (17)

where g̃(k, l) =




g(k, l), k < l ≤ s or l = n,
(g(k, l) + g(k, n))(mod2), k ≤ s < l < n,
(g(l, n) + g(k, l) + g(k, n))(mod2), s < k < l < n,

g̃(k, l) = g̃(l, k), g̃(l, l) = 0, h̃(k) =
{

h(k), k ≤ s,
(h(n) + h(k))(mod2), s < k < n.

The ∗-algebra A′ generated by selfadjoint unitary elements (u, v, (j̃k)nk=1) satisfying
(15)–(17) is ∗-isomorphic to A and can be considered as a ∗-algebra obtained by the twisted
generalized Weyl construction from the ground ring R generated by (u, v, j̃1, . . . , j̃n−1)
satisfying (15)–(16), the central element t = 1 and the automorphism σ defined in the
following way:

σ(u) = u, σ(v) = −v σ(j̃k) = (−1)g̃(k,n)j̃k.

We can use the technique above to describe representations of the algebra.
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Theorem 4 Any irreducible representation of the ∗-algebra coincides, up to a unitary
equivalence, with the following ones: 1. H = H0 ⊗ C2 ⊗ C2

u = I ⊗
(

1 0
0 −1

)
⊗ I, v = I ⊗

(
sinϕ cosϕ
cosϕ − sinϕ

)
⊗

(
1 0
0 −1

)
,

j̃k =




−j̃′k ⊗ σy ⊗
(

1 0
0 (−1)g̃(n.k)

)
, h̃(k) = 1, k �= n,

j̃′k ⊗ σ0 ⊗
(

1 0
0 (−1)g̃(n.k)

)
, h̃(k) = 0, k �= n,

jn = I ⊗ I ⊗ σx,

(18)

where ϕ ∈ (−π, π), (j̃′k)
n
k=1 is an irreducible family of unitary graded-commuting selfadjoint

operators on H0 corresponding to g̃.
2. H = H0

j̃k = j̃′k, k = 1, . . . , n, u = j̃′n+1, v = j̃′n+2, (19)

where (j̃′k)
n+2
k=1 is an irreducible family of unitary graded-commuting selfadjoint operators

corresponding to g̃′ defined as follows:

g̃′(k, i) =




g̃(k, i), k < i ≤ n,

h̃(k), k < n < i,
0, (k, i) = (n, n + 1), (n + 1, n + 2),
1, (k, i) = (n, n + 2).

Proof. By Theorem 3, given an irreducible representations π of the ∗-algebra R, we

have either π([u, v]) = 0 or, up to a unitary equivalence, π(u) = I ⊗
(

1 0
0 −1

)
, π(v) =

I⊗
(

cosϕ sinϕ
sinϕ − cosϕ

)
. It is easy to show that the pairs (π(u), π(v)) and (π(σ(u)), π(σ(v)))

are not unitarily equivalent. Hence, by Theorem 1, if π([u, v]) �= 0, then the irreducible
representation corresponding to the orbit R̂ � π → π(σ) ∈ R̂ is unitarily equivalent
to the representation defined by (18). If π([u, v]) = 0, the corresponding irreducible
representation is defined by the family of graded-commuting unitary selfadjoint operators
described by (19).
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[10] Kruglyak S.A. and Samŏılenko Yu.S., On structure theorems for families of idempotents, to appear.

[11] Mackey G.W., Induced representations of locally compact groups, I, Ann. of Math., 1952, V.55,
101–139; II, Ann. of Math., 1953, V.58, 193–221.

[12] Mazorchuk V. and Turowska L., ∗-Representations of twisted generalized Weyl constructions, to
appear.
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