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Abstract

We give a brief review of our results on investigating conditional (non-classical) sym-
metries of the multidimensional nonlinear wave Dirac and SU(2) Yang-Mills equations.

Below we give a brief account of results of studying conditional symmetries of multi-
dimensional nonlinear wave, Dirac and Yang-Mills equations obtained in collaboration
with W.I. Fushchych in 1989–1995. It should be noted that till our papers on exact
solutions of the nonlinear Dirac equation [1]–[4], where both symmetry and conditional
symmetry reductions were used to obtain its exact solutions, only two-dimensional (scalar)
partial differential equations (PDEs) were studied (for more detail, see, [5]). The principal
reason for this is the well-known fact that the determining equations for conditional sym-
metries are nonlinear (we recall that determining equations for obtaining Lie symmetries
are linear). Thus, to find a conditional symmetry of a multidimensional PDE, one has to
find a solution of the nonlinear system of partial differential equations whose dimension is
higher that the dimension of the equation under study! In paper [3], we have suggested a
powerful method enabling one to obtain wide classes of conditional symmetries of multi-
dimensional Poincaré-invariant PDEs. Later on it was extended in order to be applicable
to Galilei-invariant equations [6] which yields a number of conditionally-invariant exact
solutions of the nonlinear Levi-Leblond spinor equations [7]. The modern exposition of
the above-mentioned results can be found in monograph [8].

Historically, the first physically relevant example of conditional symmetry for a multi-
dimensional PDE was obtained for the nonlinear Dirac equation. However, in this paper,
we will concentrate on the nonlinear wave equation which is easier for understanding the
basic techniques used to construct its conditional symmetries.

As is well known, the maximal invariance group of the nonlinear wave equation

✷u ≡ ux0x0 − ∆u = F0(u), F ∈ C1(R1,R1) (1)

is the 10-parameter Poincaré group having the generators

Pµ = ∂xµ , J0a = x0∂xa + xa∂x0 , Jab = xa∂xb
− xa∂xa,

where µ = 0, 1, 2, 3, a, b = 1, 2, 3.
The problem of symmetry reduction for the nonlinear wave equation by subgroups of

the Poincaré group in its classical setting has been solved in [9]. Within the framework of
the symmetry reduction approach, a solution is looked for as a function

u(x) = ϕ(ω) (2)
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3-dimensional subalgebra 〈x0∂x3 + x3∂x0 , ∂x1 , ∂x2〉

Invariant solution u(x) = ϕ(
√
x2

0 − x2
3)

Reduced equation ϕ′′ + 1
ωϕ

′ = −F (ϕ)

❄

❄

Fig.1. Symmetry reduction scheme

�

of an invariant ω(x) of a subgroup of the Poincaré algebra. Then inserting the Ansatz
ϕ(ω) into (1) yields an ordinary differential equation (ODE) for the function ϕ(ω). As
an illustration, we give Fig.1, where ω is the invariant of the subalgebra 〈J03, P1, P2〉 ∈
AP (1, 3).

The principal idea of our approach to constructing conditionally-invariant Ansätze for
the nonlinear wave equation was to preserve the form of Ansatz (2) but not to fix a priori
the function ω(x). The latter is so chosen that inserting (2) should yield an ODE for
the function ω(x). This requirement leads to the following intermediate problem: we have
to integrate the system of two nonlinear PDEs in four independent variables called the
d’Alembert-eikonal system

ωxµωxµ = F1(ω), ✷ω = F2(ω). (3)

Hereafter, summation over repeated indices in the Minkowski space with the metric tensor
gµν = δµν × (1,−1,−1,−1) is understood, i.e.,

ωxµωxµ ≡ ω2
x0

− ω2
x1

− ω2
x2

− ω2
x3
.

As an illustration, we give below Fig.2.
According to [10], the compatible system of PDEs (3) is equivalent to the following

one:

ωxµωxµ = λ, ✷ω =
λN

ω
, (4)

where λ = 0,±1 and N = 0, 1, 2, 3. In papers [11, 12], we have constructed general
solutions of the above system for all possible values λ,N . Here, we restrict ourselves to
giving the general solution of the d’Alembert-eikonal system for the case N = 3, λ = 1.
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Ansatz u(x) = ϕ(ω(x))

Reduced equation ωxµωxµ︸ ︷︷ ︸
F1(ω)

ϕ′′ + ✷ω︸︷︷︸
F2(ω)

ϕ′ = F (ϕ)

❄
✻

System of PDEs ωxµωxµ = F1(ω), ✷ω = F2(ω)

❄

�

Fig.2. Conditional symmetry reduction scheme

Theorem. The general solution of the system of nonlinear PDEs

ωxµωxµ = 1, ✷ω =
3
ω

(5)

is given by the following formula:

u2 =
(
xµ + Aµ(τ)

)(
xµ + Aµ(τ)

)
,

where the function τ = τ(x) is determined in implicit way(
xµ + Aµ(τ)

)
Bµ(τ) = 0

and the functions Aµ(τ), Bµ(τ) satisfy the relations

A′
µB

µ = 0, BµB
µ = 0.

This solution contains f ive arbitrary functions of one variable. Choosing Aµ = Cµ =
const, Bµ = 0, µ = 0, 1, 2, 3, yields an invariant of the Poincaré group ω(x) = (xµ +
Cµ)(xµ + Cµ). All other choices of the functions Aµ, Bµ lead to Ansätze that correspond
to conditional symmetry of the nonlinear wave equation. Conditional symmetry gen-
erators can be constructed in explicit form, however, the resulting formulae are rather
cumbersome. That is why we will consider a more simple example of a non-Lie Ansatz,
namely

u(x) = ϕ
(
x1 + w(x0 + x3)

)
.
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As a direct computation shows, the above function is the general solution of the system
of linear PDEs

Qau(x) = 0, a = 1, 2, 3,

where

Q1 = ∂x0 − ∂x3 , Q2 = ∂x0 + ∂x3 − 2w′∂x1 , Q3 = ∂x2 .

The operator Q2 cannot be represented as a linear combination of the basis elements of
the Lie algebra of the Poincaré group, since it contains an arbitrary function. Furthermore,
the operators Q1, Q2, Q3 are commuting and fulfill the relations

Q̂1L = 0, Q̂2L = 4w′′∂x1(Q1u), Q̂3L = 0,

where L = ✷u− F (u), whence it follows that the system

✷u = F (u), Q1u = 0, Q2u = 0, Q3u = 0

is invariant in Lie’s sense with respect to the commutative Lie algebra A = 〈Q1, Q2, Q3〉.
This means, in its turn, that the nonlinear wave equation ✷u = F (u) is conditionally-
invariant with respect to the algebra A. The geometric interpretation of these reasonings
is given in Fig.3.

We recall that a PDE

U(x, u) = 0

is conditionally-invariant under the (involutive) set of Lie vector fields 〈Q1, . . . , Qn〉 if
there exist PDEs

U1(x, u) = 0, U2(x, u) = 0, . . . , UN (x, u) = 0

such that the system


U(x, u) = 0,
U1(x, u) = 0,
· · ·
UN (x, u) = 0

is invariant in Lie’s sense with respect to the operators Qa, ∀a.
In particular, we may take n = N, Ui(x, u) = Qiu which yields a particular form of

the conditional symmetry called sometimes Q-conditional symmetry (for more detail, see
[8, 14]).
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Subset of solutions invariant w.r.t. A

✬

✫

✩

✪
Solution set of the nonlinear wave equation

✣

✎

Fig.3

Next we give without derivation examples of new conditionally-invariant solutions of
the nonlinear wave equation with polynomial nonlinearities F (u) obtained in [15].

1. F (u) = λu3

1) u(x) =
1

a
√

2
(x2

1 + x2
2 + x2

3 − x2
0)−1/2 tan

{
−
√

2
4

ln
(
C(ω)(x2

1 + x2
2 + x2

3 − x2
0)

)}
,

where λ = −2a2 < 0,

2) u(x) =
2
√

2
a

C(ω)
(
1 ± C2(ω)(x2

1 + x2
2 + x2

3 − x2
0)

)−1
,

where λ = ±a2;
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2. F (u) = λu5

1) u(x) = a−1(x2
1 + x2

2 − x2
0)−1/4

{
sin ln

(
C(ω)(x2

1 + x2
2 − x2

0)−1/2
)

+ 1
}1/2

×
{

2 sin ln
(
C(ω)(x2

1 + x2
2 − x2

0)−1/2
)
− 4

}−1/2

,

where λ = a4 > 0,

2) u(x) =
31/4

√
a
C(ω)

(
1 ± C4(ω)(x2

1 + x2
2 − x2

0)
)−1/2

,

where λ = ±a2.

In the above formulae, C(ω) is an arbitrary twice continuously differentiable function of

ω(x) =
x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

,

a �= 0 is an arbitrary real parameter.
Let us turn now to the following class of Poincaré-invariant nonlinear generalizations

of the Dirac equation:(
iγµ∂xµ − f1(ψ̄ψ, ψ̄γ4ψ) − f2(ψ̄ψ, ψ̄γ4ψ)γ4

)
ψ = 0. (6)

Here, γµ are 4 × 4 Dirac matrices, µ = 0, 1, 2, 3, γ4 = γ0γ1γ2γ3, ψ is the 4-component
complex-valued function, ψ̄ = (ψ∗)Tγ0, f1, f2 are arbitrary continuous functions.

The class of nonlinear Dirac equations (6) contains as particular cases the nonlinear
spinor models suggested by Ivanenko, Heisenberg and Gürsey.

We have completely solved the problem of symmetry reduction of system (6) to systems
of ODEs by subgroups of the Poincaré group. An analysis of invariant solutions obtained
shows that the most general form of a Poincaré-invariant solution reads

ψ(x) = exp{θjγj(γ0 + γ3)} exp{(1/2)θ0γ0γ3 + (1/2)θ3γ1γ2}ϕ(ω), (7)

where θ0(x), . . . , θ3(x), ω(x) are some smooth functions and ϕ(ω) is a new unknown four-
component function.

Now we make use of the same idea as above. Namely, we do not fix a priori the form
of the functions θµ, ω. They are chosen in such a way that inserting Ansatz (7) into
system (6) yields a system of ODEs for ϕ(ω). After some tedious calculations, we get a
system of 12 nonlinear first-order PDEs for five functions θµ, ω. We have succeeded in
constructing its general solution which gives rise to 11 classes of Ansätze (7) that reduce
the system of PDEs (6) to ODEs. And what is more, only five of them correspond to
the Lie symmetry of (6). Other six classes are due to the conditional symmetry of the
nonlinear Dirac equation.

Below we give an example of a conditionally-invariant Ansatz for the nonlinear Dirac
equation

θj =
1
2
w′

j +

a
√
z2
1 + z2

2

x0 + x3
arctan

z1

z2
+ w3

 ∂xj

(
arctan

z1

z2

)
,

θ0 = ln(x0 + x3), θ3 = − arctan
z1

z2
, ω = z2

1 + z2
2 ,
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where zj = xj + wj , j = 1, 2, w1, w2, w3 are arbitrary smooth functions of x0 + x3 and a
is an arbitrary real constant. Provided,

a = 0, w1 = const, w2 = const, w3 = 0

the above Ansatz reduces to a solution invariant under the 3-parameter subgroup of the
Poincaré group. However if, at least, one of these restrictions is not satisfied, the Ansatz
cannot in principle be obtained by the symmetry reduction method.

Next we will turn to the SU(2) Yang-Mills equations

✷ &Aµ − ∂xµ∂xν
&Aν + e

(
(∂xν

&Aν) × &Aµ − 2(∂xν
&Aµ) × &Aν

+(∂xµ &Aν) × &Aν
)

+ e2 &Aν × ( &Aν × &Aµ) = &0.
(8)

Here, &Aµ = &Aµ(x0, x1, x2, x3) is the three-component vector-potential of the Yang-Mills
field, symbol × denotes vector product, e is a coupling constant.

It is a common knowledge that the maximal symmetry group of the Yang-Mills equa-
tions contains as a subgroup the ten-parameter Poincaré group P (1, 3). In our joint paper
with Fushchych and Lahno, we have obtained an exhaustive description of the Poincaré-
invariant Ansätze that reduce the Yang-Mills equations to ODEs [16]. An analysis of the
results obtained shows that these Ansätze, being distinct at the first sight, have the same
general structure, namely

&Aµ = Rµν(x) &Bν(ω(x)), µ = 0, 1, 2, 3, (9)

where

Rµν(x) = (aµaν − dµdν) cosh θ0 + (aµdν − dµaν) sinh θ0

+2(aµ + dµ)[(θ1 cos θ3 + θ2 sin θ3)bν + (θ2 cos θ3 − θ1 sin θ3)cν

+(θ2
1 + θ2

2)e−θ0(aν + dν)] − (cµcν + bµbν) cos θ3

−(cµbν − bµcν) sin θ3 − 2e−θ0(θ1bµ + θ2cµ)(aν + dν).

In (9), ω(x), θµ(x) are some smooth functions and what is more

θj = θj(aµx
µ + dµx

µ, bµx
µ, cµx

µ), j = 1, 2,

aµ, bµ, cµ, dµ are arbitrary constants satisfying the following relations:

aµa
µ = −bµb

µ = −cµc
µ = −dµd

µ = 1,

aµb
µ = aµc

µ = aµd
µ = bµc

µ = bµd
µ = cµd

µ = 0.

We have succeeded in constructing three classes of conditionally-invariant Ansätze of
the form (9) which yield five new classes of exact solutions of the SU(2) Yang-Mills
equations [17].
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Solution set of Eq. ✷u = F (u)

�
�✲

u = ϕ1(x1 + a(x0 + x3)2) u = ϕ2(x1 + a ln(x0 + x3))

�

❂

u = ϕ (x1 cosw1(x0 + x3) + x2 sinw1(x0 + x3) + w2(x0 + x3))

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈❖

Fig.4

In conclusion, we would like to point out a remarkable property of conditionally-
invariant solutions obtained with the help of the above-presented approach. As noted in
[15], a majority of solutions of the wave and Dirac equations constructed by virtue of the
symmetry reduction routine are particular cases of the conditionally-invariant solutions.
They are obtained by a proper specifying of arbitrary functions and constants contained in
the latter. As an illustration, we give in Fig.4, where we demonstrate the correspondence
between two invariant solutions u(x) = ϕ1(x1 + a(x0 + x3)2), u(x) = ϕ2(x1 + a(x0 + x3)2)
and the more general conditionally-invariant solution of the form:

u(x) = ϕ
(
x1 cosw1(x0 + x3) + x2 sinw1(x0 + x3) + w2(x0 + x3)

)
,

where w1, w2 are arbitrary functions.
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