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Abstract

The example of an integrable hyperbolic system with exponential nonlinearities, which
somewhat differs from known integrable systems of the Toda type as well as its local
conservation laws and reductions is presented. A wide class of exact solutions in some
particular case of the system is found.

1 Introduction

A large class of hyperbolic systems with exponential nonlinearities of the type

ui
xt =

m∑
j=1

ai
j exp

(
n∑

k=1

bj
ku

k

)
, i = 1, . . . , n, (1)

as is known, can be written as the zero-curvature condition (see, for example, [1])

Pt −Qx + [P,Q] = 0, (2)

where P = P (x, t, ζ) and Q = Q(x, t, ζ) are two matrix-functions having a simple pole at
ζ = ∞ and ζ = 0, respectevely. Representation (2) is one of the distinguished features of
partial differential equations in one spatial and one temporal dimensions, which have the
infinite sequences of symmetries and local conservation laws.

The aim of this work is to present an example of hyperbolic systems, which has repre-
sentation (2) and, in the same time, somewhat differs from systems of the type (1). Also
we present possible reductions of this system, which can be interesting from the physical
point of view.

2 Auxiliary linear problem

To begin with, we consider a linear problem in the form of the first-order system

Ψx = P (x, ζ)Ψ, (3)

where Ψ = (Ψ1,Ψ2,Ψ3)
T is the column-vector depending upon the variable x ∈ R1 and

spectral parameter ζ ∈ C1. Matrix P is written down in its explicit form as follows:

P (x, ζ) =


 −iζ + r1 1 r3

iζr2 −2r1 −iζr2

r3 1 iζ + r1


 . (4)
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Thus, the dependence of matrix elements of P (x, ζ) on the spatial variable x ∈ R1 is
defined by the collection of complex-valued functions {ri = ri(x), i = 1, 2, 3}, which are
assumed to be smooth everywhere in some domain.

Let us give some remarks about notations. In what follows, we shall omit notations
to indicate the evolution parameters dependence. Any vector-function (r1, r2, r3)T will be
denoted by r. We denote a ring of differential functions of r by Ar and a ring of matrix
differential operators with coefficients from Ar by Ar[∂x].

The linear system (3) is intimately linked with other linear problem. Let us consider
the linear equation

Ly = (iζ)2My, (5)

where L = ∂3
x + q1(x)∂x + q2(x) and M = ∂x + q3(x) are two linear differential operators.

Eq.(5) can be used as an auxiliary linear problem for bi-Hamiltonian evolution equations [6]

qτn = EgradqHn = DgradqHn+2 (6)

with the sequence of Hamiltonians Hn =
+∞∫
−∞

hndx. The sequence of Hamiltonian densities

hn, in one’s turn, can be calculated as logarithmic derivative coefficients

ψ−1ψx = −iζ +
∞∑

k=0

hk[q]
(iζ)k

of the formal solution of Eq.(5)

ψ(x, ζ) = e−iζx
∞∑

j=0

ψj(x)
(iζ)j

.

Several first Hamiltonian densities hn ∈ Aq read as

h0 =
1
2
q3, h1 =

1
2
q1 +

3
8
(q3)2, h2 = −1

2
q2 +

1
2
q1q3 +

1
2
(q3)3,

h3 =
1
8
(q1)2 +

105
128

(q3)4 +
15
16

q1(q3)2 − 3
4
q2q3 − 3

8
q1q3

x − 15
32

(q3
x)

2, etc.

Now we look for the Hamiltonian Miura map linking with the ‘second’ Hamiltonian
structure E ∈ Aq[∂x], which is explicitly given by

E =




4∂3
x + 4q1∂x + 2q1

x

2∂4
x + 2q1∂2

x + 6q2∂x + 2q2
x

0

−2∂4
x − 2q1∂2

x + (6q2 − 4q1
x)∂x + (4q2

x − 2q1
xx) 0

−4
3∂

5
x − 8

3q
1∂3

x − 4q1
x∂

2
x + (4q2

x − 4q1
xx − 4

3(q
1)2)∂x + (2q2

xx − 4
3q

1
xxx − 4

3q
1q1

x) 0

0 4
3∂x


. (7)
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By definition [2], the noninvertible differential relationship q = F [r] is a Miura map for a
certain Hamiltonian operator Ẽ ∈ Ar[∂x] if one generates the transformation Ar[∂] → Aq[∂]
by virtue of the relation

E|q=F [r] = F ′[r]Ẽ(F ′[r])†, (8)

where F ′[r] ∈ Ar[∂x] is a Fréchet derivative. To get one of the posible solutions of (8),
we try out the factorization approach. If we require, for example, L =

(
∂x + 2r1

)×
× (

∂x − r1 − r3
) (

∂x − r1 + r3
)
, while q3 = 2(r1 − r2), the linear equation (5) may be

rewritten equivalently as (3).
To write more suitable variables in a more symmetric form, the modifications of (6)

and the hyperbolic system associated with (1) can be introduced as follows: r1 = 1
12v

1 +
1
6v

2 + 1
6v

3, r2 = 1
4v

1, r3 = −1
4v

1 + 1
2v

2. Then, as can be checked by direct calculation,
the operator

Ẽ =


 0 0 −8

0 −4 0
−8 0 0


 ∂x (9)

solves relation (8) with the corresponding ansatz q = F [v]. It is obvious that this operator
is Hamiltonian [3]. Also, we can calculate Hamiltonian densities for the modified evolution
equations

h̃n = hn|q=F [v] ∈ Av (mod Im ∂x)

to obtain

h̃0 =
1
6
(−v1 + v2 + v3), h̃1 = −1

8
(
v1v3 + (v2)2

)
, h̃2 =

1
16

v1v3
(
v1 − 2v2 − v3

)−
− 1
16

(
v1v3

x − v3v1
x

)
, h̃3 =

1
32

(
4v1

xv
3
x + (v2

x)
2
)
+

3
16

v1v3
(
v1
x + v3

x

)
+

3
32

v2
(
v1v3

x − v3v1
x

)
+

+
1

128
(
9(v1v3)2 + (v2)4

)− 1
32

v1v3
(
(v1)2 + (v3)2

)
+

3
32

v1v2v3

(
v1 − 1

2
v2 − v3

)
, etc.(10)

From the form of the Hamiltonian structure E given by (9), it is evident that every
system of the modified hierarchy vτn = ẼgradvH̃n can be written in potential form. After
introducing potentials vi = uix, the first nontrivial system in these variables is explicitly
given by



u1
τ2 = −u1

xx − 1
2
(u1

x)
2 + u1

xu
2
x + u1

xu
3
x,

u2
τ2 =

1
2
u1

xu
3
x,

u3
τ2 = u3

xx +
1
2
(u3

x)
2 + u2

xu
3
x − u1

xu
3
x.

(11)

Now we observe the following fact. Let us write Eqs.(11) as one evolution equation

uτ2 = K(uxx) + ux ◦ ux (12)

on the element u =
3∑

i=1
uiei of some commutative algebra A, where K : A → A is the

endomorphism of A and ◦ denote multiplication in this algebra defining by Eqs. (11).
Then we can state that the algebra A is Jordan [4] (compare with [5]).
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3 Hyperbolic integrable system

The following question will be of interest: what systems of partial differential equations
can be written as the zero-curvature condition

Pt −Qx + [P,Q] = 0 (13)

if Q(x, ζ) = Q−1(x)(iζ)−1 + Q0(x) ∈ sl(3,C) and matrix elements of Q−1 and Q0 are
differential functions of variables ui. In such circumstances, it is easy to get

Q−1 =


 0 1 0

0 0 0
0 −1 0


 c1exp

(
1
2
u1 +

1
2
u3

)
+


 1 0 −1

0 0 0
1 0 −1


 c3

4
exp

(
−1
2
u1 + u2

)
,

Q0 =


 −1 0 0

0 2 0
0 0 −1


 c1

3
exp

(
1
2
u1 +

1
2
u3

)
+


 0 0 0

−1 0 −1
0 0 0


 c2

4
exp

(
−u2 − 1

2
u3

)
,

while the system of equations, in general form, having representation (13) reads


u1
xt = c1u

1
x exp

(
1
2
u1 +

1
2
u3

)
+ c2 exp

(
−u2 − 1

2
u3

)
,

u2
xt = c2 exp

(
−u2 − 1

2
u3

)
− c3 exp

(
−1
2
u1 + u2

)
,

u3
xt = −c1u

3
x exp

(
1
2
u1 +

1
2
u3

)
+ c3 exp

(
−1
2
u1 + u2

)
.

(14)

Here c1, c2, c3, in general case, are arbitrary complex constants. By direct calculation,
it can be checked that Eqs.(11) present the one-parameter Lie-Bäcklund group for the
hyperbolic system (14). Using an explicit form for the Hamiltonian densities of polyno-
mial flows, we can calculate any densities-fluxes of the conservation laws ∂tqk + ∂xpk =
0, qk, pk ∈ Au, k = 0, 1, ... of system (11). We have

q0 = −u1
x + u2

x + u3
x, p0 = 2c1 exp

(
1
2
u1 +

1
2
u3

)
,

q1 = u1
xu

3
x + (u2

x)
2, p1 = 2c2 exp

(
−u2 − 1

2
u3

)
+ 2c3 exp

(
−1
2
u1 + u2

)
, etc.

Consider different particular cases of system (14) and possible reductions. Choose, for
example, c2 = c3 = −1

2 and c1 = ic, where c is a real number. Putting in (14) u2 = in,
where n = n(x, t) is a real-valued function and u1 = u3∗ = ϕ, where ϕ = ϕ(x, t) is a
complex-valued function, Eqs.(14) becomes


nxt = exp

(
−1
2
Re ϕ

)
sin

(
n− 1

2
Im ϕ

)
,

ϕxt = icϕx exp (Re ϕ) +
1
2
exp

(
−in− 1

2
ϕ∗

)
,

(15)
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For the case c1 = 0, Eqs.(14) reduce to the system of Toda type [7]. Putting u2 =
u1 − u3, c2 = c3 = −2 in (14), we get{

v1
xt = exp

(
2v1 − v2

)
,

v2
xt = exp

(−v1 + 2v2
)
,

(16)

where v1 = −1
2u

1 and v2 = −1
2u

3.
Finally, let us consider the case c2 = c3 = 0. Without loss of generality, we can put

c1 = −1. In this particular case, we have


u1
xt = −u1

x exp
(
1
2
u1 +

1
2
u3

)
,

u2
xt = 0,

u3
xt = u3

x exp
(
1
2
u1 +

1
2
u3

)
.

(17)

For this case, a large class of exact solutions can be found in the form

u1 = F 1(ξ) + ln(ξt) + g3(t), u2 = η,

u3 = F 2(ξ) + ln(ξt)− g3(t),

where ξ(x, t) = f1(x) + g1(t), η(x, t) = f2(x) + g2(t) and fi(x), i = 1, 2, gi(t), i = 1, 2, 3
are arbitrary smooth functions of variables x ∈ R1 and t ∈ R1, respectively. Putting this
ansatz in (17), we lead to the system of ordinary differential equations


F 1′′ = −F 1′ exp

(
1
2
F 1 +

1
2
F 2

)
,

F 2′′ = F 2′ exp
(
1
2
F 1 +

1
2
F 2

)
.

(18)

System (18) has a solution in the form

F 1(ξ) = ln
{

2k1k3

(cos(k1ξ + k2) + k3 sin(k1ξ + k2))
2

}
+

k1

k3

(
k2

3 − 1
)
ξ + k4,

F 2(ξ) = ln
{

2k1k3

(cos(k1ξ + k2)− k3 sin(k1ξ + k2))
2

}
− k1

k3

(
k2

3 − 1
)
ξ − k4, k1, k3 
= 0.

As k1ζ + k2 also can be written in the form f(x) + g(t), then, without loss of generality,
we can put k1 = 1, k2 = 0. So, for system (17) we have a solution in the form

u1 = ln
{

2pξt

(cos ξ + p sin ξ)2

}
+

(
p− p−1

)
ξ + g3(t), u2 = η,

u3 = ln
{

2pξt

(cos ξ − p sin ξ)2

}
+

(
p−1 − p

)
ξ − g3(t),

where p = k3 
= 0.
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