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1 Introduction

The theory of finite-gap integration of the KdV equation is interesting both in applied
problems of mathematical physics and in connection with the development of general
methods for the solving of integrable nonlinear partial differential equations. The finite-
gap solutions are the coefficient functions of auxiliary linear differential equations which
have the Baker-Akhiezer eigenfunctions associated with determined complex algebraic
curves and the respective Riemann surfaces (see [1, 2, 3]). With the aid of the Baker-
Akhiezer functions, these solutions are expressed via theta functions in an implicit form.
As parameters, ones contain characteristics of the Riemann surfaces, the computation of
which is a special algebraic geometry problem (see [3, 4]).

In this paper, a simple method is proposed for calculating the three-gap elliptic solutions
of the KdV equations in the explicit form. One is based on the usage of a system of
trace formulae and auxiliary time evolution equations in the representation of the elliptic
Weierstrass function (℘-representation) [5]. It is shown that the initial three-gap elliptic
solutions (at t = 0) are the linear combinations of ℘-functions with shifted arguments
which are determined by the trace formulae. In view of the evolution equations, the
three-gap elliptic solutions of the KdV equation are a double sum of ℘-functions with
the time dependent shifts of poles. The number of terms in this sum is determined by
the condition of a coincidence of the general expression with the initial conditions at
t → 0. It is shown that the time evolution of the finite-gap elliptic solution is determined
through Xi-functions which are determined by the trace formulae and which are roots of
the algebraic equations of corresponding orders.

In distinct to the known methods (see [6, 7]), our method is characterized by a simple
and general algorithm which is valid for the computation of finite-gap elliptic solutions of
the KdV equation in cases of arbitrary finite-gap spectra of the auxiliary linear differential
equations.

2 The finite-gap equations

The finite-gap solutions of integrable nonlinear equations, in particular the KdV equation,
are solutions of the spectral problem for auxiliary linear differential equations. In so doing,
the first motion integral of these equations must be the polynomial in their eigenvalues E.
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In the case of the KdV equation, the finite-gap solutions (U(x, t)) are solutions of the
spectral problem of the Schrödinger equation [−∂2

x + U(x, t)]Ψ = EΨ with the eigenfunc-
tions (Ψ-functions) which satisfy the condition√

P (E) = Ψ−∂xΨ+ −Ψ+∂xΨ−. (1)

The right-hand side in (1) is the motion integral which follows from the known (see [8])

Ostrogradskii-Liouville formula W (x) = W (x0) × exp(
x∫

x0

dta1(t)) for the Wronski deter-

minant W (x) of the fundamental solutions Ψ−,Ψ+ (a1 is the coefficient at the (n− 1)th
derivative in a linear differential equation of nth order). The dependence of the Ψ-
function on the time t is described by the auxiliary linear equation ∂tΨ = AΨ, where
A = 4∂3

x−3[U, ∂x+U, ∂x] is the time evolution operator (see [1]). From equation (1) in ac-
cordance with the asymptotic relation Ψ → exp i

√
Ex, E → ∞, the finite-gap Ψ-function

has the form

Ψ =
√
χR(x, t, E) exp i

x∫
x0

dxχR(x, t, E), (2)

where

χR(x, t, E) = Ψ−Ψ+ =

√
P (E)

g∏
i=1

(E − µi(x, t))

is equivalent to

χR =
√
E

(
1 +

∞∑
n=1

AnE
−n

)
,

An =
1
n!
∂n

z




√
2g+1∑
n=0

anzn

g∑
n=0

bnzn




∣∣∣
z=0

.

(3)

Here ai are symmetrized products of the spectrum boundaries Ej of ith order and bi are
coefficient functions of x changing in the spectrum gaps.

On the other hand, with the aid of substitution (2) into the auxiliary Schrödinger
equation, we obtain

χR =
√
E

(
1 +

∞∑
n=0

(−1)n

22n+1
χ2n+1E

−(n+1)

)
,

χn+1 = ∂xχn +
n−1∑
k=1

χkχn−k, χ1 = −U(x),

(4)

where the second recurrent equation determines the coefficient functions χn in the form
of polynomials in U -functions and their derivatives.



Three-Gap Elliptic Solutions of the KdV Equation 355

The equalizing of the coefficient at similar powers of E of expressions (3) and (4) leads
to the trace formulae

An+1 =
(−1)n

22n+1
χ2n+1, (5)

which presents the system of equations which describe the finite-gap elliptic function
U(x, t).

The finite-gap elliptic solutions of the KdV equation admit the ℘-representation. Using
this representation in the trace formulae (5) at the initial time t = 0 and comparing the
Laurent expansion in ℘ of their left-hand and right-hand sides, we obtain the general
expression

U(z) = α0℘(z) +
∑

i

(αi℘(z + ωi) + βi(℘(z + ϕi) + ℘(z − ϕi)) + C, (6)

(℘(z) ≡ ℘(z|ω, ω′), ωi = (δi,1 − δi,2)ω + (δi,3 − δi,2)ω′) describing even initial finite-gap
elliptic solutions of the KdV equation (see [6]). Here α, β and ϕi are unknown parameters,
ω, ω′ or ω, τ = ω′/ω are independent parameters. The constant C is determined from
the condition of vanishing a constant in the Laurent expansion in ℘ of function (6). This
correspond to a vanishing shift of the spectrum the Schrödinger equation. Then the
mentioned unknown parameters are determined by substitution (6) in the trace formulae
and comparison of the Laurent expansion in ℘ of their left- and right-hand sides.

3 Initial three-gap elliptic solutions

In the case of the three-gap spectrum, the unknown parameters of expression (6) and
spectrum parameters ai are described by the system of five trace formulae (5). Index n
in these formulae receives the values n = (0, 1, 2, 3) and bi = 0, i ≥ 3. These four trace
formulae are reduced to the equation

−16a2
2 + 64a4 + 32a3U(x) + 24a2U(x)2 + 35 ∗ U(x)4−
70 ∗ U(x)U ′(x)2 − 8 ∗ a2U

′′(x)− 70 ∗ U(x)2U ′′(x)+

21U(x)′′2 + 28U ′(x)U ′′′(x) + 14U(x)U (4)(x)− U (6)(x) = 0,

(7)

determining the unknown parameters of initial three-gap elliptic solutions of the KdV
equation. Under the condition of vanishing of coefficients of the Laurent expansion in ℘ of
the left-hand side (7), we obtain a closed system of algebraic equations for the mentioned
parameters α, αi, βi and ϕi. The general relation α �= 0 and a) αi = βi = 0; b) αi �=
0, βi = 0, c) αi = 0, βi �= 0, following from these equations determine three kinds of
initial three-gap elliptic solutions. In the case a), the substitution of expression (6) into
equation (7) under the condition of vanishing the coefficients of its Laurent expansion in
℘ gives α = 12. In so doing, from (6) we obtain the expression

U(z) = 12℘(z) (8)

for the well-known [5] three-gap Lamé potential.

In the case b), the parameters αi have the form αi =
m∑

j=1
δi,j × const, j = (1, 2, 3).

In so doing, the substitution of expression (6) in equation (7) and nuliifying coefficients
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of the Laurent expansion of its left-hand side give a simple algebraic equation for the
unknown parameter. Taking into account values of these parameters in (6), we obtain the
expressions

U(z) = 12℘(z) + 2℘(z + ωi)− 2ei, ei = ℘(ωi) (9)

U(z) = 12℘(z) + 2(℘(z + ωi) + ℘(z + ωj))− 2(ei + ej) (10)

(ei = ℘(ωi)) which describe the initial three-gap elliptic solutions of the KdV equation
which are similar to the well-known [9] two-gap Treibich-Verdier potentials.

In the case of relations c), the parameters βi have the form αi =
m∑

j=1
δi,jconst, j =

(1, 2, 3). Then the substitution of expression (6) into equation (7) and nullifying of
coefficients of the Laurent expansion in ℘ of its left-hand side lead to α = 12, β = 2.
In so doing, the condition of vanishing the coefficient of the fifth order pole at the point
℘ = h, h = ℘(ϕ) determines the equation

h6 +
101
196

g2h
4 +

29
49
g3h

3 − 43
784

g2
2h

2 − 23
196

g2g3h−
(

1
3136

g3
2 +

5
98
g2
3

)
= 0

for h = h(ϕ). Six values of h determine six values of the parameter ϕ = ℘−1(h). The
substitution of the obtained parameters into (6) leads to the expression

U(z) = 12℘(z) + 2(℘(z + ϕ) + ℘(z − ϕ))− 4℘(ϕ) (11)

describing the initial three-gap elliptic solutions of the KdV equations similar to the two-
gap potential in [6].

4 Dynamics of three-gap elliptic solutions

The time dependent three-gap elliptic solutions of the KdV equation are solutions of the
system involving both the trace formulae (5) and the above-mentioned auxiliary evolution
equation. Substitution (2) into the last equation and separation of the real and imaginary
parts transform one to the form

∂tχR(x, t, E) = ∂x{(λχR(x, t, E)}, λ = −2(U(x, t, E) + E)

Relation (3) reduces the last equality to

∂tbn − 2{bn∂xU − U∂xbn + 2∂xbn+1} = 0, n = (1, . . . , g) (12)

(g means the number of spectral gaps), where bn-functions in view of the trace formulae (5)
are polynomials in U -functions and their derivatives. Substitution of the U -function in the
℘-representation into equation (12) and a comparison of the Laurent expansions of their
left-hand and right-hand sides give simple algebraic equations determining the general
form and the time dependence of the U -function. The general finite-gap elliptic solutions
of the KdV equation have the form

U(z, t) = 2
N∑

i=1

℘(z − ϕi(t)) + C, (13)



Three-Gap Elliptic Solutions of the KdV Equation 357

where the number N and the constant C are determined by the condition of coincidence
of (13) with the initial finite-gap elliptic solutions at t → 0. In so doing, the dynamic
equations (12) are reduced to the equations

∂tϕi(t) = −12Xi(t) + C, Xi(ϕi(t)) =
N−1∑
i�=j
i=1

℘(ϕi(t)− ϕj(t)), (g ≥ 2),

N∑
n=1

∂t℘(z − ϕi(t)) = 0, (g = 1)

(14)

describing the time evolution of poles ϕi. Here, the N functions Xi(t) = Xi(hi(ϕi(t)))
are determined by the trace formula (5) with the index n = N − 1. A compariszon of the
Laurent expansions in ℘ of the left-hand and right-hand sides of the last equation leads
to the algebraic equation of Nth order for the unknown functions Xi(hi). Then (14) can
be transformed to the equality

ϕi∫
ϕ0i

dϕi

Xi(hi(ϕi))
= −12t, (15)

describing the dynamics of poles in expression (13). Here, initial values ϕ0i are determined
from the initial conditions describing by expressions (8)-(11) in the three-gap case. Thus,
the problem of time evolution of three-gap elliptic solutions of the KdV equation is reduced
to computation of the functions Xi(hi(ϕi)).

In the three-gap case, the condition of coincidence of the general expression (13) with
(8)–(11) at t → 0 leads to N = (6, 7, 8).

The values N = 6 and N = 7 determine two three-gap elliptic solutions of the KdV
equation with the initial conditions (8) and (9), respectively. The substitution of expression
(13) with N = 6 and N = 7 in the trace formulae with the index n = 5 and n = 6,
respectively, and a usage of the Laurent expansion in ℘ lead to the algebraic equations

6∑
i=0

c
(6)
i (h)Xi = 0, and

7∑
i=0

c
(7)
i (h)Xi = 0.

of the 6th and 7th orders, respectively. Here, the coefficients c
(6)
i (h) and c

(7)
i (h) are

rational functions of h(ϕ) and h′(ϕ); c(6)6 (h) = c
(7)
7 (h) = 1. The roots of these equations

coincide with the functions Xi =
6∑

j=1
℘(ϕi − ϕj) and Xi =

7∑
j=1

℘(ϕi − ϕj) which enter into

the dynamic equation (15).
The substitution N = 8 into (13) gives the three-gap elliptic solution of the KdV

equation with the possible initial conditions (10) and (11). In so doing, Xi-functions of
the dynamic equation (15) are determined by the trace formula (5) with the index n = 7.
In this case, a comparison of the Laurent expansions in ℘ of the left-hand and right-hand
sides of the last equation leads to the algebraic equation of the 8th order

8∑
i=0

c
(8)
i (h)8Xi = 0, c

(8)
8 (h) = 1.
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The solutions of this equation coincide with the functions Xi =
8∑

j=1
℘(ϕi − ϕj) entering

into the dynamic equation (15).
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