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Abstract

The Hirota bilinear difference equation plays the central role in the study of integrable
nonlinear systems. A direct correspondence of the large symmetry characterizing this
classical system to the Moyal algebra, a quantum deformation of the Poisson bracket
algebra, is shown.

1 Introduction

In the study of nonlinear systems, completely integrable systems play special roles. They
are not independent at all, but are strongly correlated with each other owing to the large
symmetries shared among themselves. We like to know how far we can extend such systems
without loosing integrability. The question could be answered if we know how much we
can deform the symmetries characterizing the integrable systems.

In this note, we would like to discuss the Moyal bracket algebra [1], a quantum defor-
mation of the Poisson bracket algebra, as a scheme which should describe a large class of
integrable systems. Here, however, we focus our attention to the Hirota bilinear difference
equation (HBDE) [2], a difference analogue of the two-dimensional Toda lattice.

This paper is organized as follows. We first explain HBDE and what is the Moyal
quantum algebra in the following two sections. Using the Miwa transformation [3] of
soliton variables, the correspondence of the shift operator appeared in HBDE to the Moyal
quantum operator is shown in sections 4 and 5. The large symmetry possessed by the
universal Grassmannian of the KP hierarchy [4, 5] is explained in section 6 within our
framework, and the connection of their generators to the Moyal quantum operators is
shown in the last section.

2 Hirota bilinear difference equation

The Hirota bilinear difference eqution (HBDE) is a simple single equation which is given
by [2]

αf(k1 + 1, k2, k3)f(k1, k2 + 1, k3 + 1) + βf(k1, k2 + 1, k2)f(k1 + 1, k2, k3 + 1)

+γf(k1, k2, k3 + 1)f(k1 + 1, k2 + 1, k3) = 0,
(1)
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where kj ∈ Z are discrete variables and α, β, γ ∈ C are parameters subject to the
constraint α + β + γ = 0.

The contents of this equation is, however, very large. In fact, this single difference
equation

1. is equivalent to the soliton equations of the KP-hierarchy [2, 4, 5],

2. characterizes algebraic curves (Fay’s trisecant formula) [4],

3. is a consistency relation for the Laplace maps on a discrete surface [6],

4. is satisfied by string correlation functions in the particle physics [7], and

5. by transfer matrices of certain solvable lattice models [8, 9, 10, 11, 12],

etc..
We note here that HBDE (1) is a collection of infinitely many ‘classical’ soliton equa-

tions [2, 3]. For the purpose of describing the symmetric nature of this equation, it will
be convenient to rewrite it as(

α exp
[
∂k1 + ∂k′

2
+ ∂k′

3

]
+ β exp

[
∂k′

1
+ ∂k2 + ∂k′

3

]
+ γ exp

[
∂k′

1
+ ∂k′

2
+ ∂k3

])
× f(k1, k2, k3)f(k′

1, k
′
2, k

′
3)|k′

j=kj
.

(2)

As we will see later, it is this shift operator exp ∂kj that generates the symmetry of a system
associated with the Moyal ‘quantum’ algebra. Classical soliton equations are obtained by
expanding the shift operators in (2) into power series of derivatives [4, 5].

The space of solutions to this equation, hence to the KP hierarchy, is called the Univer-
sal Grassmannian [4]. Every point on this space corresponds to a solution of HBDE, which
can be given explicitly. Starting from one solution, we can obtain other solutions via a
sequence of Bäcklund transformations. The transformations generate a large symmetry
which characterizes this particular integrable system.

3 Moyal quantum algebra

Let us explain what is the Moyal algebra[1]. We will show, in other sections, its relation
to the integrable systems characterized by HBDE.

The Moyal bracket is a quantum deformation of the Poisson bracket and is given by [1]

i{f, g}M :=
1
λ
sin

{
λ

(
∂x∂p′ − ∂x′∂p

)}
f(x, p)g(x′, p′)

∣∣∣∣
x′=x,p′=p

(3)

where x and p are the coordinates and momenta in RN with N being the number of
degres of freedom. It turns to the Poisson bracket in the small λ limit. In this particular
limit, the symmetry is well described by the language of differential geometry. Therefore,
our question is whether there exists a proper language which can describe concepts, in
the case of finite values of λ, corresponding to the terms such as vector fields, differential
forms, and Lie derivatives. The answer is ”yes” [13]. In order to show that, we first define
a difference operator by

∇ax,ap :=
1
λ
sinh [λ(a∂)] , (a∂) := ax∂x + ap∂p (4)
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For a given C∞ function f(x, p), the Hamiltonian vector field is defined as [13]

XD
f :=

(
λ

2π

)2N ∫
daxdap

∫
dbxdbp e−iλ(axbp−apbx)f(x+λbx, p+λbp)∇ax,ap .(5)

The operation of the Hamiltonian vector field to a function g on the phase space yields
the Moyal bracket:

XD
f g(x, p) = i{f, g}M . (6)

The above definition of the Hamiltonian vector fields enables us to extend the concept
of Lie derivative in the differential geometry to a discrete phase space [13]. In fact, we
can show directly the following relation between two vector fields:[

XD
f , XD

g

]
= XD

−i{f,g}M
. (7)

This exhibits a very large symmetry generated by Hamiltonian vector fields, which should
be shared commonly by the physical systems formulated in our prescription. This algebra
itself was derived and discussed [14, 15, 16] in various contexts including some geometrical
arguments.

For the vector field XD
f to be associated with a quantum operator, we must introduce

a difference one form whose pairing with the vector field yields the expectation value of f .
It is shown in [13] that such a pairing can be defined properly by considering a quantum
state characterized by the Wigner distribution function [17].

4 Miwa transformation

The Miwa transformation [3] of variables enables us to interpret the shift operators in
HBDE (2) as the Hamiltonian vector field discussed above. It is defined by

tn :=
1
n

∑
j

kjz
n
j , n = 1, 2, 3, . . . . (8)

In this expression, kj (j ∈ N) are integers among which k1, k2, k3 belong to (1). tn’s are
new variables which describe soliton coordinates of the KP hierarchy. For instance, t1 = t
and t3 = x are the time and space variables, respectively, of the KdV equation. zj ’s are
complex parameters which are defined on the Riemann surface.

In the language of string models, the soliton variables tn’s correspond to the oscillation
parts of open strings [7]. The center of momenta x0 and the total momentum p0 should
be also included as dynamical variables, which are related to kj ’s by

p0 =
∑

j

kj , x0 = i
∑

j

kj ln z̄j . (9)

In addition to (8), we also define

t̄n :=
1
n

∑
j

kj z̄
−n
j , n = 1, 2, 3, . . . , (10)
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so that the physical space of oscillations is doubled. The phase space of oscillations are
described by tn’s and t̄n’s as

xn =
√

n

2
(tn + t̄n) =

√
1
2n

∑
j

kj

(
zn
j + z̄−n

j

)
, n = 1, 2, 3, . . . ,

pn =
1
i

√
n

2
(tn − t̄n) =

1
i

√
1
2n

∑
j

kj

(
zn
j − z̄−n

j

)
, n = 1, 2, 3, . . . .

(11)

In terms of these new variables, the shift operators appearing in HBDE (2) become

exp ∂kj = exp [λ(aj∂)] . (12)

Here (aj∂) is the sum of an infinite number of components in the notation of (4). The
values of the components of aj,x and aj,p are specialized to

aj,x0 =
i

λ
ln z̄j , aj,p0 =

1
λ

,

aj,xn =
zn
j + z̄−n

j

λ
√
2n

, aj,pn =
zn
j − z̄−n

j

iλ
√
2n

, n = 1, 2, 3, . . . .
(13)

5 Gauge covariant shift operator

We now gauge the shift operator to obtain a gauge covariant shift operator:

e
∂kj → XS

uj
:= U(k)e∂kj U−1(k). (14)

Here U(k) is a function of k = {k1, k2, · · ·}. Using the Miwa transformation, we can write
it in terms of the soliton variables as

XS
uj

= uj(x, p)eλ(aj∂), uj(x, p) := U(k)U−1(k(j)), (15)

where k(j) denotes the set of k’s but kj is replaced by kj + 1.
The covariant shift operators also form a closed algebra as follows:[

XS
uj

, XS
vl

]
= XS

{uj ,vl}S
(16)

where

{uj , vl}S :=
(

e
λ
(
al∂′)

− eλ(aj∂)
)

uj(x, p)vl(x′, p′)
∣∣∣∣
x′=x,p′=p

. (17)

In this formula, ∂ and ∂′ act on uj and vl selectively.
We now want to establish the correspondence of gauge covariant shift operators to the

Hamiltonian vector field of the Moyal quantum algebra discussed before. For this purpose,
we denote by XD

uj
the antisymmetric part of −XS

uj
,

XD
uj

=
1
2λ

(
X

S
uj

− XS
uj

)
, (18)
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Here X
S
uj

is obtained from XS
uj

by reversing the direction of shift in (15). Then it is not
difficult to convince ourselves that XD

uj
is a Hamiltonian vector field of (5) with f being

specialized to uj , and uj itself is given by uj(x, p) = exp [iλ (aj,px − aj,xp)] . We thus
obtain an expression for the shift operator

XS
uj

= exp [iλ (aj,px − aj,xp)] exp [λ (aj,x∂x + aj,p∂p)] , (19)

from which we can form a Hamiltonian vector field of the Moyal algebra. We notice
that this operator Xuj is nothing but the vertex operator for the interaction of closed
strings [7].

Does there exist U associated to this uj(x, p) ? We can see that

U(k) :=
∏
j,l

(
z̄j − zl

z̄l − zj

)−klkj

(20)

satisfies this requirement if we substitute it to (15) and use the Miwa transformations.

6 Symmetry of HBDE

One of the symmetries which characterize the solution space of HBDE is generated by the
Bäcklund transformation [4, 5]. The generators of this symmetry are given by

B(zj , zl) := 4πV (zj)V̄ (zl) (21)

where V (zj) is obtained from XS
uj

of (19) simply by ignoring the t̄n and x0 dependence.
In terms of the soliton variables, we can express it in the form

V (zj) := exp

[
p0 ln z̄j −

∞∑
n=1

z̄−n
j tn

]
exp

[
∂p0 +

∞∑
n=1

1
n

zn
j ∂tn

]
,

V̄ (zj) := exp

[
−p0 ln z̄j +

∞∑
n=1

z̄−n
j tn

]
exp

[
−∂p0 −

∞∑
n=1

1
n

zn
j ∂tn

]
.

(22)

These vertex operators must be thought being local field operators which might behave
singularly when their coordinates z get close with each other. For instance, after simple
calculation we find

V (zj)V̄ (zl) =
1

z̄l − zj
exp

[
p0 ln

(
z̄j

z̄l

)
−

∞∑
n=1

(
z̄−n
j − z̄−n

l

)
tn

]
exp

[ ∞∑
n=1

1
n

(
zn
j − z−n

l

)
∂tn

]
,

V̄ (zl)V (zj) =
1

z̄j − zl
exp

[
p0 ln

(
z̄j

z̄l

)
−

∞∑
n=1

(
z̄−n
j − z̄−n

l

)
tn

]
exp

[ ∞∑
n=1

1
n

(
zn
j − z−n

l

)
∂tn

]
.

(23)

If we are interested in the behaviour of these quantities on the real axis, the summation of
V (zj)V̄ (zl) and V̄ (zl)V (zj) is zero. If we are interested in the behaviour, not on the real
axis but near the real axis, we must be more careful. Let us write z̄m − zm = −2iε, ∀m,
and take the limit of ε → 0. We find

V (zj)V̄ (zl) + V̄ (zl)V (zj) = 4πiδ(zl − zj). (24)
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This is the result known as bosonization. Using this result, we can show that B’s form the
algebra gl(∞), which characterizes the symmetry of the universal Grassmannian [4, 5],

[B(zj , zk), B(zl, zm)] = iB(zj , zm)δ(zk − zl)− iB(zk, zl)δ(zj − zm). (25)

This symmetry includes the conformal symmetry of the theory [18]. In fact, the Vi-
rasoro generators are included in (21) in the limit of zj → zl. W1+∞ symmetry of the
KP-hierarchy [19, 20, 21] can be also described in our scheme.

7 Quantum deformation

We now look at the vertex operator V (zj) from other view point. It must be also repre-
sented as a gauge covariant shift operator as XS

uj
in (14). Indeed, we can rewrite it in the

form of (14), i.e., U exp ∂kjU
−1, by choosing U(k) as

U(k) =
∏
j �=l

(z̄l − zj)kjkl . (26)

It then follows, from their construction, that V (zj) and V̄ (zl) must commute with each

other; [V (zj), V̄ (zl)] = 0, ∀j, l. By the same reason, we should have
[
XS

uj
, XS

ul

]
=

0, ∀j, l, as long as XS
uj

and XS
ul

are induced by the same function U(k). Apparently,
this is not compatible with the previous result, e.g., (24). How can we get rid of this
contradiction?

Instead of trying to avoid this problem, we like to interpret it as a transition from a
classical view to a quantum view. To do this, we recall that the shift operators exp ∂kj

define HBDE, a classical soliton equation. The change of variables, via Miwa transfor-
mations, introduces infinitely many new variables and the shift operator is represented in
terms of quantized local fields. If we expand exp ∂kj in (1) into powers of ∂tn ’s, we obtain
infinitely many classical soliton equations which belong to the KP hierarchy [4, 5]. But
their infinite collection may not be classical anymore.

This transition is, however, not sufficient to claim that V (zj), expressed in the form
of (22), is an operator of quantum mechanics. A quantum mechanical operator must be
described in terms of a Moyal Hamiltonian vector field of (5). From this point of view,
the operator XD

uj
of (18) could be a candidate of a quantum mechanical object.

Before closing this note, let us see the algebra corresponding to (24), but V (zj) is
replaced by XS

uj
of (19). It is more convenient to introduce the notations V (zj) := XS

uj

and V̄ (zj) being defined by substituting −λ in the place of λ on the right hand side of
(19). After some calculations similar to (23), we find

V (zj)V̄ (zl) =
z̄j − zl

z̄l − zj
exp [iλ {(aj,p − al,p)x − (aj,x − al,x)p}] exp [λ ((aj − al)∂)] ,

V̄ (zl)V (zj) =
z̄l − zj

z̄j − zl
exp [iλ {(aj,p − al,p)x − (aj,x − al,x)p}] exp [λ ((aj − al)∂)] ,

from which we obtain, in the limit of small z̄m − zm = −2iε,

V (zj)V̄ (zl)− V̄ (zl)V (zj) = lim
ε→0

8iε(zj − zl)
(zj − zl)2 + 4ε2

. (27)

This does not vanish in the limit of ε → 0 iff zj − zl is the same order of ε.
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