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Abstract

We consider a Coulomb problem for the modified Stueckelberg equation. For some
specific values of parameters, we establish the presence of parasupersymmetry for spin-
1 states in this problem and give the explicit form of corresponding parasupercharges.

Introduction

In spite of the striking progress of quantum field theory (QFT) during last three decades,
the problem of description of bound states in QFT context isn’t yet completely solved.
This state of things stimulates the use of various approximate methods in order to obtain
physically important results.

In this paper, we work within the frame of the so-called one-particle approximation
(OPA) which consists in neglecting creation and annihilation of particles and the quan-
tum nature of external fields which the only particle we consider interacts with. This
approximation is valid for the case where the energy of the interaction between the par-
ticle and the field is much less than the mass of the particle. In OPA, the operator of
the quantized field corresponding to our particle is replaced by the ”classical” (i.e., non-
secondly quantized) quantity which is in essence nothing but the matrix element of that
operator between vacuum and one-particle state (cf. [1] for the case of spin 1/2 particles).
This quantity may be interpreted as a wave function of the particle and satisfies a linear
equation, in which external field also appears as a classical quantity.

But for the case of massive charged spin-1 particles interacting with external electro-
magnetic field, even such relatively simple equations lead to numerous difficulties and
inconsistencies [2, 3]. Only in 1995, Beckers, Debergh and Nikitin [2] overcame most of
them and suggested a new equation describing spin-1 particles. They exactly solved it
and pointed out its parasupersymmetric properties for the case of external constant ho-
mogeneous magnetic field [2]. (To find out more about parasupersymmetry, refer to [4]
and references therein.)

The evident next step is to study this model for another physically interesting case
of external Coulomb field (and in particular to check the possibility of existence of the
parasupersymmetry in this case too).

In order to overcome some difficulties arising in the process of such a study, we consider
in [3] and here a ”toy” model corresponding to a particle with two possible spin states:
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spin-1 and spin-0. Beckers, Debergh and Nikitin in [2] suggested a new equation for this
case too, but our one is slightly more general (refer to Section 1).

The plan of the paper is as follows. In Section 1, we write down the equation describing
our model (we call it modified Stueckelberg equation). In Section 2, we briefly recall the
results from [3] concerning the exact solution of this model for the case of the Coulomb field
of attraction. Finally, in Section 3, we point out the existence of the parasupersymmetry
in the Coulomb field for spin-1 states at particular values of some parameters of our model.

1 Modified Stueckelberg equation

We consider the so-called modified Stueckelberg equation written in the second-order for-
malism [3]:

(DµD
µ +m2

eff )B
ν + iegFµ

ρ B
ρ = 0, (1)

where

m2
eff =M2 + k2 | e2FµνF

µν |1/2, Dµ = ∂µ + ieAµ, Fµν = ∂µAν − ∂νAµ. (2)

We use here the � = c = 1 units system and following notations: small Greek letters
denote indices which refer to the Minkowski 4-space and run from 0 to 3 (unless otherwise
stated); we use the following metrics of the Minkowski space: gµν = diag[1,−1,−1,−1];
the four-vector is written as Nµ = (N0,N), where the bold letter denotes its three-vector
part; coordinates and derivatives are xµ = (t, r), ∂µ = ∂/∂xµ; Aµ are potentials of external
electromagnetic field; e, g and M are, respectively, charge, gyromagnetic ratio and mass
of the particle described by (1). Its wave function is given by the four-vector Bµ. In the
free (e = 0) case [2] this particle has two possible spin states: spin-0 and spin-1 ones with
the same mass M .

Equation (1) generalizes the modification of the Stueckelberg equation from [2] for
the case of an arbitrary gyromagnetic ratio g (authors of [2] consider only the g = 2
case). We also put the module sign at expression (2) for m2

eff (in spite of [2]) in order to
avoid complex energy eigenvalues in the Coulomb problem (else µi (9) and, hence, energy
eigenvalues of the discrete spectrum Einj will be complex).

2 Coulomb field

The 4-potential, corresponding to the Coulomb field of attraction, is:

A = 0, A0 = −Ze/r, Z > 0. (3)

Since it is static and spherically symmetric, energy E and total momentum J = L + S
(L is an angular momentum and S is a spin) are integrals of motion. Let us decompose
the wavefunctions of stationary states with fixed energy E in the basis of common eigen-
functions of J2 and Jz with eigenvalues j(j + 1) and m, respectively, j = 0, 1, 2, . . ., for a
given j, m = −j,−j + 1, . . . , j. The corresponding eigenmodes are:

B0
Ejm = iFEj(r)Yjm exp(−iEt),

BEjm = exp(−iEt)
∑

σ=−1,0,1

B
(σ)
Ej (r)Y

(σ)
jm ,

(4)
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where Y(σ)
jm are spherical vectors (see [5] for their explicit form) and Yjm are usual spherical

functions. It may be shown that FEj and Bσ
Ej , (σ = −1, 0, 1) in fact don’t depend on

m [5]. For the sake of brevity from now on, we often suppress indices Ej at FEj and
B

(σ)
Ej (σ = −1, 0, 1).
The substitution of (3) and (4) into (1) yields the following equations for F and B(σ):

TV = (2/r2)PV, TB(0) = 0, (5)

where

V = (FB(−1)B(1))†, P =




0 −b 0
b 1 −a
0 −a 0




(† denotes matrix transposition, a =
√
j(j + 1), β = Ze2, b = βg/2);

T = (E + β/r)2 + d2/dr2 + (2/r)d/dr − j(j + 1)/r2 −M2 − k2β/r2. (6)

Notice that for j = 0 B(0)
Ej = B(1)

Ej ≡ 0 [5].
By the appropriate replacement of the basis (introducing new unknown functions K(i),

i = 1, 2, 3, being linear combinations of B(σ), σ = −1, 1 and F (r)), equations (5) for
radial functions may be reduced to the following form [3] (for convenience, we denote
K(0) ≡ B(0)):

TK(i) = (2λi/r
2)K(i) i = 0, 1, 2, 3, (7)

where

λl = 1/2 + (−1)l−1
√
(j + 1/2)2 − (βg/2)2, l = 1, 2, λ0 = λ3 = 0. (8)

Energy eigenvalues of the discrete spectrum for (7) are [3]:

Einj =M/
√
1 + β2/(n+ µi + 1)2, (9)

where n = 0, 1, 2, . . .; j = 0, 1, 2 . . .; i = 0, 1, 2, 3 and

µi = −1/2 +
√
(j + 1/2)2 − β2 + 2λi + k2β (10)

(index i corresponds to the following eigenmode: K(i) �= 0, other functions K(l) = 0; since
for j = 0 K(0) = K(3) ≡ 0, in this case, we have only two branches corresponding to
i = 1, 2). Branches of the spectrum for i = 0 and i = 3 are completely identical, i.e., we
meet here a twofold degeneracy.

The discrete spectrum eigenfunctions are [3]

K(i)nj = cinjxµi exp(−x/2)Lµi
n (x), (11)

where cinj are normalization constants, x = 2r
√
M2 − E2, Lα

n are Laguerre polynomials,
n = 0, 1, 2, . . .; j = 0, 1, 2 . . .; i = 0, 1, 2, 3.
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3 Parasupersymmetry

We consider the case k2 = 0, g = 2, j > 0 where [3]

µ1 = λ1, µ0 = λ1 − 1, µ2 = λ1 − 2

and hence the above energy eigenvalues (9) possess the threefold extra degeneracy:

E1,n+1,j = E0,n,j = E3,n,j = E2,n−1,j , n > 1. (12)

Moreover, we restrict ourselves by considering only spin-1 states, setting the condition
(compatible with (1) for the case of Coulomb field if k2 = 0, g = 2 for the states with
j > 0 [3])

DµB
µ
Ejm =

{
EK

(3)
Ej +

2∑
i=1

[
dK

(i)
Ej/dr+

+(1 + λi)K
(i)
Ej/r − EβK(i)

Ej/λi

]}
exp(−iEt)Yjm = 0.

(13)

We use here the term ”spin-1 states” by the analogy with the free (e = 0) case (cf. [1]),
i.e., we call spin-1 states the states satisfying (13). In virtue of (13) the component K(3)

is expressed via the remaining ones and isn’t more independent [3]. This implies that we
must deal with only three branches of the discrete spectrum Einj , i = 0, 1, 2.

Equations (7) which remain after the exclusion ofK(3) may be rewritten in the following
form:

Hψ = εψ, (14)

where
ψ = (K(1)K(0)K(2))†, H = 2diag [H1,H0,H2];

Hi = −d2/dr2 − (2/r)d/dr − λi(λi + 1)/r2 − 2βE/r+

+(1/2)βE(1/λ1 + 1/λ2) for i = 1, 2,

H0 = −d2/dr2 − (2/r)d/dr − λ1(λ1 − 1)/r2 − 2βE/r + (1/2)βE(1/λ1 + 1/λ2),

ε = βE(1/λ1 + 1/λ2)− 2(M2 − E2).

(15)

Let us introduce parasupercharges Q+ and Q− of the form:

Q+ =




0 S1 0
0 0 R2

0 0 0


 , Q− =




0 0 0
R1 0 0
0 S2 0


 ,

where

Ri = d/dr + (1 + λi)/r − Eβ/λi, Si = −d/dr + (λi − 1)/r − Eβ/λi. (16)

Now it is straightforward to check that Q+, Q−, Q1 = (Q+ +Q−)/2, Q2 = (i/2)(Q+ −
Q−) and H satisfy the commutation relations of the so-called p = 2 parasupersymmetric
quantum mechanics of Rubakov and Spiridonov (see, e.g., [2, 4]):

(Q±)3 = 0, Q3
i = HQi, [Q±,H] = 0,

{Q2
i ,Q3−i}+QiQ3−iQi = HQ3−i, i = 1, 2,

(17)

where [A,B] = AB− BA, {A,B} = AB+ BA.
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We see that the parasupercharges Q+, Q− commute with H and hence are (non-Lie)
symmetries of our Coulomb problem. Their existence is just the reason of the above-
mentioned threefold extra degeneracy.

4 Conclusions and discussion

Thus, in this paper, we the explained the threefold extra degeneracy of discrete spectrum
levels in a Coulomb problem for the modified Stueckelberg equation for k2 = 0, g = 2,
j > 0, n > 1 by the presence of parasupersymmetry. Our results present a natural
generalization of supersymmetry in a Coulomb problem for the Dirac equation [4].

It is also worth noticing that, in the case of Coulomb field for k2 = 0, g = 2, the
equations of our model for the spin-1 states with j > 1 coincide with the equations for
the same states of the Corben-Schwinger model [6] for g = 2. Hence, their model also is
parasupersymmetric and possesses non-Lie symmetries – parasupercharges Q+, Q−.

Finally, we would like to stress that, to the best of author’s knowledge, our model
give one of the first examples of parasupersymmetry in a relativistic system with non-
oscillator-like interaction.

I am sincerely grateful to Prof. A.G. Nikitin for statement of the problem and stimula-
ting discussions.
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