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Abstract

Potential V(x,t) classes, depending on both independent variables x and ¢, which
allow a symmetry of the Schrédinger equation in the differential operators class of the
third order are found.

One-dimensional non-relativistic systems can be considered with the help of the Schrédin-
ger equation

2

LU(z,t) = |po — f—m —V(z,t)| U(z,t) =0, (1)

where py = ia, p = —i—, V(z,t) is a potential.

ox
For equation (1), its symmetric analysis plays an important role. The Schrodinger
equation symmetry is also surveyed in works [1-7].
The operator of a symmetry @ of equation (1) is an operator, which complies with the

condition

[L7 Q] =0, (2)
where

[L,Q] = LQ — QL. (3)

Let us find classes of potentials V' (x,t), which possess symmetry with respect to a
differential operator Q3 of the third order

Q3 = azp® + asp® + ar1p + ao, (4)

where as, as, a1, ap are unknown functions depending on variables & and ¢. Substituting
operator (4) to equation (2) and, after corresponding changes, equating coefficients of the
corresponding operators of differentiation, we obtain the system of differential equations

as =0,
. 1
as + %GIQ = 0,
1
g + —a), — 6asV' =0, (5)
2m
. 1
a1 + %aé —4asV' =0,

ag — 2a1V' + 2(13‘//” =0.
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Integrating system (5), we obtain
az = as(t),
as = —2maszr + a3(t),
a1 = 2m?azz? + 12mazV — 2madx + ad(t),
ah = —4mPaza? — 16m2azaV’ — 24m?asV — 24m2asV+
8madV’ + 4m2idx — 2mal,
ao — 2a1V' + 2a3V" = 0,

where a3(t), a3(t), al(t) are unrestricted functions depending on ¢.

Some classes of potentials V (x) which comply with system (6) are found in [6, 8]:

2 2 2 2 2
Viz) = m’ V(z) = ECQ tan” cz, V(z) = %(tanh2 cx — 1),
2¢2 1 9 2 ol
m m \ sinh” cx sinh® cx

where c¢ is some unrestricted constant.
We succeeded to indentify other kinds of potentiales V' (z,t) (depending on variables x
and t) with the symmetry under the class of differential operators Q3.
If we set ag = const, as = a = a3 = 0 in (6), then we obtain the system
a1 = 12ma3sV,
aly = —24m2a3V, (7)
ag — 201 V' + 2(13V’” = 0.
After some changes, we obtain the equation in partial derivatives for finding V' (z,t):

12m%V 4 12mVV” +12m(V')? = V" = 0. (8)

Equation (8) can be written as

12m2V = (V" — 6mV?)". 9)

A solution of the given equation is the function

2
V() = (;—;nﬂ ot c3> (1 + 1), (10)

where ¢, ¢, c3, ¢4 are unrestricted constants.

t
If we make the substitution V(z,t) = Ya,t) in equation (9), then we will obtain the
equation
12m*U = (U" — 6U?)". (11)

We know [9], that a solution of the equation y” — 6y*> = 0 (y = y(x)) is the function
y(x) = p(x + ¢p), where p is the Weierstrass function with invariants go = 0 and g3 = ¢y,
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and c¢; is an unrestricted constant. Using this fact, we can write a solution of equation
(11) as

Ulz,t) = (at + Bp(x + o),

and a solution of equation (9)

L (at + B)p(z + co), (12)

m

Vix,t) =

where «, 3, cg are unrestricted constants.
Thus, the found operators V(x,t) (10), (12) exhibit the symmetry of the Schrodinger
equation (1) in the class of differential operators of the third order Qs.
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