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Abstract

Potential V (x, t) classes, depending on both independent variables x and t, which
allow a symmetry of the Schrödinger equation in the differential operators class of the
third order are found.

One-dimensional non-relativistic systems can be considered with the help of the Schrödin-
ger equation

LΨ(x, t) =
[
p0 − p2

2m
− V (x, t)

]
Ψ(x, t) = 0, (1)

where p0 = i
∂

∂t
, p = −i

∂

∂x
, V (x, t) is a potential.

For equation (1), its symmetric analysis plays an important role. The Schrödinger
equation symmetry is also surveyed in works [1–7].
The operator of a symmetry Q of equation (1) is an operator, which complies with the

condition

[L, Q] = 0, (2)

where

[L, Q] = LQ − QL. (3)

Let us find classes of potentials V (x, t), which possess symmetry with respect to a
differential operator Q3 of the third order

Q3 = a3p
3 + a2p

2 + a1p+ a0, (4)

where a3, a2, a1, a0 are unknown functions depending on variables x and t. Substituting
operator (4) to equation (2) and, after corresponding changes, equating coefficients of the
corresponding operators of differentiation, we obtain the system of differential equations

a′3 = 0,

ȧ3 +
1
2m

a′2 = 0,

ȧ2 +
1
2m

a′1 − 6a3V
′ = 0,

ȧ1 +
1
2m

a′0 − 4a2V
′ = 0,

ȧ0 − 2a1V
′ + 2a3V

′′′ = 0.

(5)



Higher Order Symmetry Operators for the Schödinger Equation 329

Integrating system (5), we obtain

a3 = a3(t),

a2 = −2mȧ3x+ a0
2(t),

a1 = 2m2ä3x
2 + 12ma3V − 2mȧ0

2x+ a0
1(t),

a′0 = −4m3···a3x
2 − 16m2ȧ3xV ′ − 24m2ȧ3V − 24m2a3V̇+

8ma0
2V

′ + 4m2ä0
2x − 2mȧ0

1,

ȧ0 − 2a1V
′ + 2a3V

′′′ = 0,

(6)

where a3(t), a0
2(t), a0

1(t) are unrestricted functions depending on t.
Some classes of potentials V (x) which comply with system (6) are found in [6, 8]:

V (x) =
2c2

m cos2 cx
, V (x) =

2
m

c2 tan2 cx, V (x) =
2c2

m
(tanh2 cx − 1),

V (x) =
2c2

m
(coth2 cx − 1), V (x) =

1
m

(
c2

sinh2 cx
± c2 cosh cx

sinh2 cx

)
,

where c is some unrestricted constant.
We succeeded to indentify other kinds of potentiales V (x, t) (depending on variables x

and t) with the symmetry under the class of differential operators Q3.
If we set a3 = const, a2 = a0

1 = a0
2 = 0 in (6), then we obtain the system

a1 = 12ma3V,

a′0 = −24m2a3V̇ ,

ȧ0 − 2a1V
′ + 2a3V

′′′ = 0.

(7)

After some changes, we obtain the equation in partial derivatives for finding V (x, t):

12m2V̈ + 12mV V ′′ + 12m(V ′)2 − V ′′′′ = 0. (8)

Equation (8) can be written as

12m2V̈ = (V ′′ − 6mV 2)′′. (9)

A solution of the given equation is the function

V (x) =
(
− c2

1

2m
t2 + c2t+ c3

)
(c1x+ c4), (10)

where c1, c2, c3, c4 are unrestricted constants.

If we make the substitution V (x, t) =
U(x, t)

m
in equation (9), then we will obtain the

equation

12m2Ü = (U ′′ − 6U2)′′. (11)

We know [9], that a solution of the equation y′′ − 6y2 = 0 (y = y(x)) is the function
y(x) = ℘(x+ c0), where ℘ is the Weierstrass function with invariants g2 = 0 and g3 = c1,
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and c1 is an unrestricted constant. Using this fact, we can write a solution of equation
(11) as

U(x, t) = (αt+ β)℘(x+ c0),

and a solution of equation (9)

V (x, t) =
1
m
(αt+ β)℘(x+ c0), (12)

where α, β, c0 are unrestricted constants.
Thus, the found operators V (x, t) (10), (12) exhibit the symmetry of the Schrödinger

equation (1) in the class of differential operators of the third order Q3.

References

[1] Fushchych W.I. and Nikitin A.G., Symmetry of Equations of Quantum Mechanics, Allerton Press Inc.,
New York, 1994.

[2] Niederer U., Helv. Phys. Acta, 1972, V.45, 802.

[3] Niederer U., Helv. Phys. Acta, 1973, V.46, 191.

[4] Anderson R.L., Kumei S. and Wulfman C.E., Rev. Mex. Fis., 1972, V.21, 1.

[5] Miller U., Symmetry and Separation of Variables, Addison-Wesley, Massachussets, 1977.

[6] Beckers J., Debergh N. and Nikitin A.G., On Supersymmetries in Nonrelativistic Quantum Mechanics,
Liege PTM preprint, 1991.

[7] Boyer C.P., Helv. Phys. Acta, 1974, V.47, 590.

[8] Bagrov V.G. and Gitman D.M., Exact Solutions of Relativistic Wave Equations, Kluwer Academic
Publ., Dordrecht, 1990.

[9] Kamke E., Differentialgleichungen. Lösungsmethoden und Lösungen, Leipzig, 1959.


