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Abstract

Higher order symmetry operators for the wave equation with scalar and vector po-
tentials are investigated. All scalar potentials which admit second order symmetry
operators are found explicitly.

Symmetries of partial differential equations are used for separation of variables [1],
description of conservation laws [2], construction of exact solutions [3], etc. Before can be
applied, symmetries have to be found, therefore search for symmetries attracts attention
of many investigators.

We say a linear differential operator of order n is a symmetry operator (or simply a
symmetry) of a partial differential equation if it transforms any solution of this equation
into a solution. If n = 1, then the symmetry is nothing but a generator of a Lie group
being a symmetry group of the equation considered. If n > 1, the related symmetries are
referred as non-Lie or higher symmetries.

The symmetry aspects of the Schrödinger equation have been investigated by many
authors (see [1] and references cited in), the higher symmetries of this equation where
investigated in [4–9]. In contrast, the higher symmetries of the relativistic wave equation
have not been studied well yet.

In this paper, we investigate the higher symmetries of the wave equation with an
arbitrary scalar potential

Lψ ≡ (∂µ∂
µ − V )ψ = 0 (1)

where µ = 0, 1, . . . ,m. We deduce equations describing both potentials and coefficients
of the corresponding symmetry operators of order n and present the complete list of
potentials admitting symmetries for the case m = 1, n = 2, which completes the results
of papers [10, 11]. In addition, we find all the possible scalar potentials V and vector
potentials Aµ such that the equation

L̂ψ ≡ (DµD
µ − V )ψ = 0, Dµ = ∂µ − eAµ, µ = 0, 1 (2)
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admits any Lie symmetry. Moreover, we consider the case of time-dependent potential V
and present a constructive test in order to answer the question if the corresponding wave
equation admits any Lie symmetry.

Let us represent a differential operator of arbitrary order n in the form

Qn =
n∑

j=0

[[· · · [Ka1a1...aj , ∂a1 ]+ , ∂a2

]
+
, · · · ∂aj

]
+
, (3)

where Ka1a1...aj are arbitrary functions of x = (x0, x1, . . . , xm), [A,B]+ = AB + BA. We
say Qn is a symmetry operator of equation (1) if it satisfies the invariance condition [13]

[Qn, L] = αn−1L, (4)

where αn−1 is a differential operator of order n− 1 which we represent in the form

αn =
n−1∑
j=0

[[· · · [αa1a2...aj , ∂a1 ]+ , ∂a2

]
+
, · · · ∂aj

]
+
. (5)

To find the determining equations for coefficients of a symmetry operator of arbitrary
order, it is sufficient to equate coefficients of the same differentials in (4). We start with
the case m = 1 in order to verify the old results [10]. For the first order symmetries

Q = [Ka, ∂a]+ + K (6)

we obtain the following determining equations

∂(aKb) =
1
2
gabα, (7)

∂aK = −1
2
∂aα, (8)

2Ka∂aV = −αV − 1
4

(∂b∂bα). (9)

Formula (7) defines the equation for a conformal Killing vector whose general form is

K0 = ϕ(x− t) + f(x + t) + c, K1 = ϕ(x− t) − f(x + t), (10)

where ϕ and f are arbitrary functions, c is an arbitrary constant. Moreover, in accordance
with (7), (8), (10), α = 4(ϕ′ − f ′), K = α/2 + C, and the remaining condition (9) takes
the form

∂0(K0V ) + ∂1(K1V ) = 0. (11)

Using the fact that K1 satisfies the wave equation and changing V = 1/U2, we come to
the following differential consequence of (11):

U ′′ = ω2U + C, ω = const, C = 0, (12)

which is clearly simply the compatibility condition for system (6)–(9).
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Nonequivalent solutions of (12) have the form

V = C, V =
C

x2
, V = C exp(−2ωx),

V =
C

cos2(ωx)
, V =

C

cosh2(ωx)
, V =

C

sinh2(ωx)
,

(13)

where C and ω are arbitrary real constants. These potentials are defined up to equivalence
transformations, x → ax + b, where a, b are constants.

In comparison with the list of symmetry adopting potentials present in [10], formula
(13) includes one additional potential (the last one) which was not found in [10].

We see the list of potentials admitting Lie symmetries is very restricted and is exhausted
by the list of potentials enumerated in (13). The corresponding symmetry operators are
easily calculated using relations (6)–(11).

We notice that the determining equations (6)-(9) are valid in the case of time-dependent
potentials also. Moreover, we again come to equation (11) where K0 and K1 are functions
defined in (10). These functions can be excluded by a consequent differentiation of (11).
As a result, we obtain the following relation for V :

✷ {ln[ln(✷ lnV )η − (lnV )η]} = ✷ {ln[ln(✷ lnV )ζ − (lnV )ζ ]} ,
✷ = ∂2

t − ∂2
x, (·)η = ∂η(·), η = x + t, ζ = x− t,

(14)

which is a necessary and sufficient condition for the corresponding equation (1) to admit
a Lie symmetry. It is the case, e.g., if the potential V satisfies the wave equation or has
the form V = f(η)ϕ(ζ).

For the classification of the potentials admitting invariance algebras of dimension k > 1,
refer to [12].

The second order symmetries are searched in the form (see (3))

Q = [[Kab, ∂a, ]+, ∂b]+ + [Ka, ∂a]+ + K, α̂ = [αa, ∂a]+ + α (15)

which leads to the following determining equations:

∂(aKbc) = −1
4
α(agbc), ∂(aKb) =

1
2

(∂(aαb) − gabα),

∂aK =
1
2
∂aα + αaV − 4Kab∂bV, Ka∂aV =

1
2

(αa∂aV + αV ).
(16)

These equations can be solved by analogy with (6)–(12). Omitting straightforward
but cumbersome calculations, we notice that the compatibility condition for system (15)
again has the form (12) where C is an arbitrary constant. Moreover, V = U/2(U ′). The
corresponding general solution for the potential is given by formulas (13) and (17):

V = Cx, V = C1 +
C2

x
, V = C exp(ωx)x + C exp(2ωx),

V = C1
cos(ωx) + C2

sin2(ωx)
, V = C1

sinh(ωx) + C2

cosh2(ωx)
, V = C1

cosh(ωx) + C2

sinh2(ωx)
.

(17)

The list of solutions (17) includes all the potentials found in [11] and one additional
potential given by the last term. We notice that potentials (13), (17) make it possible
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to separate variables in equation (1) [14]. In other words, the potentials admitting a
separation of variables are exactly the same as the potentials admitting second order
symmetries.

Let us consider equation (2). Without loss of generality, we set A1 = 0, bearing in mind
ambiguities arising due to gauge transformations. Then the corresponding determining
equations for the first-order symmetries reduce to the form

∂(aKb) = −1
2
gabα, ∂0K − 2iA1K̇

0 + 2iA′
1K

1 =
1
2
α̇ + iαA1,

K ′ + 2iK̇1 A1 =
1
2
α′, 2iA0K̇ − 2V F 1 = −α(V + A2

1) + iα̇(V + A2
1) +

1
4
✷α.

(18)

These equations are valid for time-dependent as well as time-independent potentials. Re-
stricting ourselves to the last case, we find the compatibility condition for this system can
be represented in the form (12), moreover,

k1A
′
1 = k2V =

1
U2

(19)

where k1, k2 are arbitrary constants. Using (13), we find the admissible vector potentials
in the form

A1 = C̃x, (20a)

A1 =
C̃

x
, (20b)

A1 = C̃ exp(−2ωx), (20c)

A1 = C̃ tan(ωx), (20d)

A1 = C̃ tanh(ωx), (20e)

A1 = C̃ coth(ωx). (20f)

The list (20) exhausts all time independent vector potentials which admit Lie symme-
tries. Let us present explicitly the corresponding symmetry operators:

Q1 = ∂t, Q2 = ∂x − iC̃t, Q3 = t∂x − x∂t − iC̃(x2 + t2); (21a)

Q = ∂t, Q2 = t∂t + x∂x, Q3 = (t2 + x2)∂t + 2tx∂x − 2iC̃x; (21b)

Q1 = ∂t, Q2 = exp[ω(x + t)](∂t + ∂x) + iC̃ exp[ω(x− t)],

Q3 = exp[ω(x− t)](∂t − ∂x)] + iC̃ exp[−ω(x + t)];
(21c)

Q1 = ∂t,

Q2 = sin(ωt) sin(ωt)∂t − cos(ωt) cos(ωx)∂x + C̃ sin(ωt) cos(ωx);

Q3 = cos(ωt) sin(ωx)∂t + sin(ωt) cos(ωx)∂x − C̃ cos(ωt) cos(ωx);

(21d)

Q1 = ∂t,

Q2 = sinh(ωt) sinh(ωx)∂t + cosh(ωt) cosh(ωx)∂x − iC̃ sinh(ωt) cosh(ωx),

Q3 = cosh(ωt) sinh(ωx)∂t + cosh(ωt) sinh(ωt)∂x − iC̃ cosh(ωt) cosh(ωx);

(21e)
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Q1 = ∂t,

Q2 = cosh(ωt) cosh(ωx)∂t + sinh(ωt) sinh(ωx)∂x − iC̃ cosh(ωt) sinh(ωx),

Q3 = sinh(ωt) cosh(ωx)∂t + cosh(ωt) sinh(ωx)∂x − iC̃ sinh(ωt) sinh(ωx).

(21f)

Operators (21a) and (21b) form the Lie algebra isomorphic to AO(1, 2) while the alge-
bras of operators (21c)–(21f) are isomorphic to AE(2). The corresponding potentials V
have to satisfy relation (20). We notice that formulae (21) define symmetry operators for
equation (1) with potentials (14) also if we set C̈ = 0. These results are in accordance
with the general classification scheme present in [12].

In conclusion, we return to equation (1) and present the determining equations for the
symmetry operators (3) of arbitrary order n in a space of any dimension m + 1:

∂(an+1Ka1a2...an) =
1
4
g(anan+1αa1a2...an−1),

∂(anKa1a2...an−1) =
1
4
g(anan−1αa1a2...an−2) − 1

2
∂(anαa1a2...an−1),

∂(am−n+1Ka1a2...an−m) = −1
4
∂b∂bα

a1a2...n−m+1+

+
[n−m

2 ]∑
k=0

(−1)k 2(n−m + 2 + 2k)!
(2k + 1)!(n−m + 1)!

Ua1a2...an−m+1 + W a1a2...an−m+1 ,

[n−1
2 ]∑

p=0

(−1)p+1Kb1b2...b2p+1∂b
1∂

b
2 . . . ∂

b
2p+1V +

n−1∑
k=0

αb1b2...bk∂b
1∂

b
2 . . . ∂

b
kV = 0.

(22)

Here,

Ua1a2...an−m+1 = Ka1a2...an−m+1b1b2...b2k+1∂b1∂b2 . . . ∂b2k+1V,

W a1a2...an−1 = αa1a2...an−1V,

W a1a2...an−2 = −(n− 1)αa1a2...an−2b∂bV − αa1a2...an−2V,

W a1a2...an−2q−1 = −
q−1∑
k=0

(−1)k (n− 2k − 2q)!
(2k + 1)!(n− 2q − 1)!

×

×αa1a2...an−2q−1b1b2...b2k+1∂b1∂b2 . . . ∂b2k+1V − αa1a2...an−2p−1V−

−1
2

q−1∑
k=0

(−1)k+q (n− 2k − 1)!
(n− 2p− 1)!(2p− 2k − 1)!(p− k)

×

×αa1aa...an−2k−1b1b2...b2p−2k∂b1∂b2 . . . ∂b2p−2kV,

q = 1, 2, . . .
[
n− 2

2

]
,

W a1a2...an−2q = −
q−1∑
k=0

(−1)k (n− 2q + 2k + 1)!
(2k + 1)!(n− 2q)!

×
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×αa1a2...an−2q+2k+1b1b2...b2k+1∂b1∂b2 . . . ∂b2k+1V − αa1a2...an−2qV−

−1
2

q−2∑
k=0

(−1)k+q (n− 2k − 2)!
(n− 2q)!(2q − 2k − 3)!(q − k − 1)

×

×αa1a2...an−2kb1b2...b2q−2k−2∂b1∂b2 . . . ∂b2q−2k−2V,

q = 2, 3, . . . ,
[
n− 1

2

]
.

Equations (22) define the potentials admitting non-trivial symmetries of order n, and
the coefficients K ... of the corresponding symmetry operators, as well.

For V = 0, equations (22) reduce to the following form

∂(aj+1Ka1a2...aj) =
2

m + 2j − 1
∂bKb(a1a2...aj−1gajaj+1) = 0, (23)

αa1a2...aj−1 =
2

m + 2j − 1
∂bKba1a2...aj−1 , (24)

where K ··· and α··· are symmetric and traceless tensors.
Thus, in the above case, the system of determining equations is decomposed into the

uncoupled subsystems (24), which are the equations for a conformal Killing tensor that
can be integrated for any m [8]. The corresponding symmetry operators reduce to polyno-
mials in generators of the conformal group, moreover, the number of linearly independent
symmetries for m = 2 and m = 3 [8] is given by the formulas:

N2 =
1
3

(n + 1)(2n + 1)(2n + 3), N3 =
1
12

(n + 1)2(n + 2)2(2n + 3). (25)

Formulae (25) take into account n-order symmetries but no symmetries of order j < n.

Acknowledgments

One of the author (AN) is grateful to the DFFD of Ukraine (project 1.4/356) for the
financial support.

References

[1] Miller U., Symmetry and Separation of Variables, Addison-Wesley, Massachusetts, 1977.

[2] Fushchych W.I., Shtelen W.M. and Serov N.I., Symmetry Analysis and Exact Solutions of Equations
of Nonlinear Mathematical Physics, Kluwer Academic Publishers, Dordrecht, 1993.

[3] Fushchych W.I. and Nikitin A.G., Symmetries of Equations of Quantum Mechanics, Allerton Press
Inc., New York, 1994.

[4] Beckers J., Debergh N. and Nikitin A.G., Mod. Phys. Lett. A, 1992, V.7, 1609.

[5] Beckers J., Debergh N. and Nikitin A. G., Mod. Phys. Lett. A, 1993, V.8, 435.

[6] Beckers J., Debergh N. and Nikitin A.G., J. Phys. A, 1992, V.24, L1269.



Higher Symmetries of the Wave Equation with Scalar and Vector Potentials 327

[7] Nikitin F.G., Onufriichuk S.P. and Fushchych W.I., Teor. Mat. Fiz., 1992, V.91, 268.

[8] Nikitin A.G., Ukr. Mat. Zh., 1991, V.43, 1521; English transl: Ukr. Math. J., 1991, V.43, 1413.

[9] Fushchych W.I. and Nikitin A.G., Higher symmetries and exact solutions of linear and nonlinear
Schrödinger equation, Preprint ASI-TPA/9/96, Clausthale, 1996 (to be published in J. Math. Phys.,
1997, V.38, N 11).

[10] Ovsyannikov L.V., PMTF, 1960. 3.

[11] Shapovalov V.N., Izvestia VUZ’ov, Fizika, 1969, V.9, 64.

[12] Ovsyannikov L.V., Group Analysis of Differential Equations, Nauka, Moscow, 1978.

[13] Fushchych W.I. and Nikitin A.G., Symmetries of Maxwell’s Equations, D. Reidel, Dordrecht, 1987.

[14] Fushchych W.I., Zhdanov R.Z. and Revenko I.V., J. Phys. A, 1993, V.26, 5959.


