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Abstract

We present a detailed account of symmetry properties of SU(2) Yang-Mills equa-
tions. Using a subgroup structure of the conformal group C(1, 3), we have constructed
C(1, 3)-inequivalent ansatzes for the Yang-Mills field which are invariant under three-
dimensional subgroups of the conformal group. With the aid of these ansatzes, reduc-
tion of Yang-Mills equations to systems of ordinary differential equations is carried
out and wide families of their exact solutions are constructed.

Classical ideas and methods developed by Sophus Lie provide us with a powerful tool
for constructing exact solutions of partial differential equations (see, e.g., [1–3]). In the
present paper, we apply the above methods to obtain new explicit solutions of the SU(2)
Yang-Mills equations (YME). YME is the following nonlinear system of twelve second-
order partial differential equations:

∂ν∂
νAµ − ∂µ∂νAν + e[(∂νAν) × Aµ−
−2(∂νAµ) × Aν + (∂µAν) × Aν ] + e2Aν × (Aν × Aµ) = 0.

(1)

Here ∂ν =
∂

∂xν
, µ, ν = 0, 1, 2, 3; e = const, Aµ = Aµ(x) = Aµ(x0, x1, x2, x3) are three-

component vector-potentials of the Yang-Mills field. Hereafter, the summation over the
repeated indices µ, ν from 0 to 3 is supposed. Raising and lowering the vector indices are
performed with the aid of the metric tensor gµν , i.e., ∂µ = gµν∂ν (gµν = 1 if µ = ν = 0,
gµν = −1 if µ = ν = 1, 2, 3 and gµν = 0 if µ �= ν).

It should be noted that there are several reviews devoted to classical solutions of YME
in the Euclidean space R4. They have been obtained with the help of ad hoc substitutions
suggested by Wu and Yang, Rosen, ’t Hooft, Carrigan and Fairlie, Wilczek, Witten (for
more detail, see review [4] and references cited therein). However, symmetry properties of
YME were not used explicity. It is known [5] that YME (1) are invariant under the group
C(1, 3) ⊗ SU(2), where C(1, 3) is the 15-parameter conformal group and SU(2) is the
infinite-parameter special unitary group. Symmetry properties of YME have been used
for obtaining some new exact solutions of equations (1) by W. Fushchych and W. Shtelen
in [6].

The present talk is based mainly on the investigations by the author together with
W. Fushchych and R. Zhdanov [7–12].
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1. Linear form of ansatzes

The symmetry group of YME (1) contains as a subgroup the conformal group C(1, 3)
having the following generators:

Pµ = ∂µ,

Jµν = xµ∂ν − xν∂µ + Aaµ∂Aa
ν
−Aaν∂Aa

µ
,

D = xµ∂µ −Aa
µ∂Aa

µ
,

Kµ = 2xµD − (xνx
ν)∂µ + 2Aaµxν∂Aa

ν
− 2Aa

νx
ν∂Aa

µ
.

(2)

Here ∂Aa
µ

=
∂

∂Aa
µ

, a = 1, 2, 3.

Using the fact that operators (2) realize a linear representation of the conformal algebra,
we suggest a direct method for construction of the invariant ansätze enabling us to avoid
a cumbersome procedure of finding a basis of functional invariants of subalgebras of the
algebra AC(1, 3).

Let L = 〈X1, . . . , Xs〉 be a Lie algebra, where

Xa = ξaµ(x)∂µ + ρamk(x)uk∂um . (3)

Here ξaµ(x), ρamk(x) are smooth functions in the Minkowski space R1,3, µ = 0, 1, 2, 3,
m, k = 1, 2, . . . , n. Let also rankL = 3, i.e.,

rank||ξaµ(x)|| = rank||ξaµ(x), ρamk(x)|| = 3 (4)

at an arbitrary point x ∈ R1,3.

Lemma [3]. Assume that conditions (3), (4) hold. Then, a set of functionally independent
first integrals of the system of partial differential equations

XaF (x, u) = 0, u = (u1, . . . , un)

can be chosen as follows

ω = ω(x), ωi = hik(x)uk, i, k = 1, . . . , n

and, in addition,

det||hik(x)||ni=1
n
k=1 �= 0.

Consequently, we can represent L-invariant ansatzes in the form

ui = hik(x)vk(ω)

or

u = Λ(x)v(ω), (5)

where

u =




u1
...
un


 , v =




v1
...
vn


 ,

Λ(x)) is a nonsingular matrix in the space R1,3.
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Let

S01 =




0 −I 0 0
−I 0 0 0
0 0 0 0
0 0 0 0


 , S02 =




0 0 −I 0
0 0 0 0
−I 0 0 0
0 0 0 0


 ,

S03 =




0 0 0 −I
0 0 0 0
0 0 0 0
−I 0 0 0


 , S12 =




0 0 0 0
0 0 −I 0
0 I 0 0
0 0 0 0


 ,

S13 =




0 0 0 0
0 0 0 −I
0 0 0 0
0 I 0 0


 , S23 =




0 0 0 0
0 0 0 0
0 0 0 −I
0 0 I 0


 ,

where 0 is zero and I is the unit 3 × 3 matrices, and E is the unit 12 × 12 matrix. Now
we can represent generators (2) in the form

Pµ = ∂xµ ,

Jµν = xµ∂xν − xν∂xµ − (SµνA · ∂A),

D = xµ∂xµ − k(E A · ∂A),

K0 = 2x0D − (xνx
ν)∂x0 − 2xa(S0a A · ∂A),

K1 = −2x1D − (xνx
ν)∂x1 + 2x0(S01A · ∂A) − 2x2(S12A · ∂A) − 2x3(S13A · ∂A),

K2 = −2x2D − (xνx
ν)∂x2 + 2x0(S02A · ∂A) + 2x1(S12A · ∂A) − 2x3(S23A · ∂A),

K3 = −2x3D − (xνx
ν)∂x3 + 2x0(S03A · ∂A) + 2x1(S13A · ∂A) + 2x2(S23A · ∂A).

(6)

Here, the symbol (∗ · ∗) denotes a scalar product,

A =




A1
0

A2
0

A3
0

...
A2

3

A3
3




, ∂A = (∂A1
0
, ∂A2

0
, . . . , ∂A3

3
).

Let L be a subalgebra of the conformal algebra AC(1, 3) with the basis elements (2) and
rankL = 3. According to Lemma, it has twelve invariants

fma(x)Aa, a,m = 1, . . . , 12,

which are functionally independent. They can be considered as components of the vector

F ·A,

where F = ||fmn(x)||, m,n = 1, . . . , 12. Furthemore, we suppose that the matrix F is non-
singular in some domain of R1,3. Providing the rankL = 3, there is one additional invariant
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ω independent of components of A. According to [1], the ansatz FA = B(ω) reduces sys-
tem (1) to a system of ordinary differential equations which contains the independent
variable ω, dependent variables B1

0 , B
2
0 , . . . , B

3
3 , and their first and second derivatives.

This ansatz can be written in the form (5):

A = Q(x)B(x), Q(x) = F−1(x), (7)

where a function ω and a matrix F satisfy the equations

Xaω = 0, a = 1, 2, 3,

XaF = 0, a = 1, 2, 3,

or

ξaµ(x)
∂ ω

∂ xµ
= 0,

ξaµ(x)
∂ F

∂ xµ
+ FΓa(x) = 0, a = 1, 2, 3, µ = 0, 1, 2, 3,

(8)

where Γa(x) are certain 12 × 12 matrices.
It is not difficult to make that matrices Γa have the form (6):

Pµ : Γµ = 0;

Jµν : Γµν = −Sµν ;

D : Γ = −E;

K0 : Γ̃0 = −2x0E − 2xaS0a (a = 1, 2, 3);

K1 : Γ̃1 = 2x1E + 2x0S01 − 2x2S12 − 2x3S13;

K2 : Γ̃2 = 2x2E + 2x0S02 + 2x1S12 − 2x3S23;

K3 : Γ̃3 = 2x3E + 2x0S03 + 2x1S13 + 2x2S23.

It is natural to look for a matrix F in the form

F (x) = exp{(− ln θ)E} exp(θ0S03) exp(−θ3S12) exp(−2θ1H1)×
exp(−2θ2H2) exp(−2θ4H̃1) exp(−2θ5H̃2),

(9)

where θ = θ(x), θ0 = θ0(x), θm = θm(x) (m = 1, 2, . . . , 5) are arbitrary smooth functions,
Ha = S0a − Sa3, H̃a = S0a + Sa3 (a = 1, 2).

Generators Xa (a = 1, 2, 3) of a subalgera L can be writen in the next general form:

Xa = ξaµ(x)∂xµ + QaA∂A,

where

Qa = faE + f0aS03 + f1aH1 + f2aH2 + f3aS12 + f4aH̃1 + f5aH̃2,



Symmetry Reduction and Exact Solutions of the SU(2) Yang-Mills Equations 317

and Fa = fa(x), f0a = f0a(x), fma = fma(x) (m = 1, . . . , 5) are certain functions. Con-
sequently, the determining system for the matrix F (9) reduces to the system for finding
functions θ, θ0, θm (m = 1, . . . , 5):

ξaµ
∂θ

∂xµ
= faθ,

ξaµ
∂θ0

∂xµ
= 4(θ4f1a + θ5f2a) − f0a,

ξaµ
∂θ3

∂xµ
= 4(θ4f2a − θ5f1a) + f3a,

ξaµ
∂θ1

∂xµ
= 4(θ1θ4 + θ2θ5)f1a + 4(θ1θ5 − θ2θ4)f2a − θ1f0a − θ2f3a +

1
2
f1a,

ξaµ
∂θ2

∂xµ
= 4(θ2θ4 − θ1θ5)f1a + 4(θ2θ5 + θ1θ4)f2a − θ2f0a + θ1f3a +

1
2
f2a,

ξaµ
∂θ4

∂xµ
= θ4f0a − 2(θ2

4 − θ2
5)f1a − 4θ4θ5f2a − θ5f3a +

1
2
f4a,

ξaµ
∂θ5

∂xµ
= θ5f0a − 4θ4θ5f1a + 2(θ2

4 − θ2
5)f2a + θ4f3a +

1
2
f5a.

(10)

Here, µ = 0, 1, 2, 3, a = 1, 2, 3.

2. Reduction and exact solutions of YME

Substituting (7), (9) into YME we get a system of ordinary differential equations. How-
ever, owing to an asymmetric form of the ansatzes, we have to repeat this procedure 22
times (if we consider Poincaré-invariant ansatzes). For the sake of unification of the re-
duction procedure, we use the solution generation routine by transformations from the
Lorentz group (see, for example, [8]). Then ansatz (7), (8) is represented in a unified way
for all the subalgebras. In particular, P (1, 3)-invariant ansatzes have the following form:

Aµ(x) = aµν(x)Bν(ω), (11)

where

aµν(x) = (aµaν − dµdν) cosh θ0 + (dµaν − dνaµ) sinh θ0+

+2(aµ + dµ)[(θ1 cos θ3 + θ2 sin θ3)bν + (θ2 cos θ3 − θ1 sin θ3)cν+

+(θ2
1 + θ2

2)e−θ0(aν + dν)] + (bµcν − bνcµ) sin θ3−
−(cµcν + bµbν) cos θ3 − 2e−θ0(θ1bµ + θ2cµ)(aν + dν).

(12)

Here, µ, ν = 0, 1, 2, 3; x = (x0,x), aµ, bµ, cµ, dµ are arbitrary parameters satisfying the
equalities

aµa
µ = −bµb

µ = −cµc
µ = −dµd

µ = 1,

aµb
µ = aµc

µ = aµd
µ = bµc

µ = bµd
µ = cµd

µ = 0.

Theorem. Ansatzes (11), (12) reduce YME (1) to the system

kµγB̈γ +lµγḂγ +mµγBγ +egµνγḂν×Bγ +ehµνγBν×Bγ +e2Bγ×(Bγ×Bµ) = 0. (13)
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Coefficients of the reduced equations are given by the following formulae:

kµγ = gµγF1 −GµGγ , lµγ = gµγF2 + 2Sµγ −GµHγ −GµĠγ ,

mµγ = Rµγ −GµḢγ , gµνγ = gµγGν + gνγGµ − 2gµνGγ ,

hµνγ =
1
2

(gµγHν − gµνHγ) − Tµνγ ,

(14)

where F1, F2, Gµ, Hµ, Sµν , Rµν , Tµνγ are functions of ω determined by the relations

F1 =
∂ω

∂xµ

∂ω

∂xµ , F2 = ✷ω, Gµ = aγµ
∂ω

∂xγ
,

Hµ =
∂aγµ

∂xγ
, Sµν = aγ

µ

∂aγν

∂xδ

∂ω

∂xδ
, Rµν = aγ

µ✷aγν ,

Tµνγ = aδ
µ

∂aδν

∂xσ
aσγ + aδ

ν

∂aδγ

∂xσ
aσµ + aδ

γ

∂aδµ

∂xσ
aσν .

A subalgebraic structure of subalgebras of the conformal algebra AC(1, 3) is well known
(see, for example, [13]). Here we restrict our considerations to the case of the subalgebra
〈Ga = J0a − J03, J03, a = 1, 2〉 of the algebra AP (1, 3). In this case, θ = 1, θ4 = θ5 = 0
and functions fa, f0a, fma (a,m = 1, 2, 3) have following values:

G1 : f1 = f01 = f21 = f31 = 0, f11 = −1;

G2 : f2 = f02 = f12 = f32 = 0, f22 = −1;

J03 : f3 = f13 = f23 = f33 = 0, f03 = −1;

Consequently, system (10) has the form:

G
(1)
1 θ0 = G

(1)
1 θ2 = G

(1)
1 θ3 = 0, G

(1)
1 θ1 = −1

2
;

G
(1)
2 θ0 = G

(1)
2 θ1 = G

(1)
2 θ3 = 0, G

(1)
2 θ2 = −1

2
;

J
(1)
03 θ0 = 1, J

(1)
01 θ3 = 0, J

(1)
03 θa = θa (a = 1, 2).

Here,

G
(1)
a = (x0 − x3)∂xa + xa(∂x0 + ∂x3) (a = 1, 2),

J
(1)
03 = x0∂x3 + x3∂x0 .

In particular, the system for the function θ0 reads

(x0 − x3)
∂θ0

∂xa
+ xa

(
∂θ0

∂x0
+

∂θ0

∂x3

)
= 0 (a = 1, 2), x0

∂θ0

∂x3
+ x3

∂θ0

∂x0
= 1,

and the function θ0 = − ln |x0 − x3| is its particular solution. In a similar way, we find

that θ1 = −1
2
x1(x0 − x3)−1, θ2 = −1

2
x2(x0 − x3)−1, θ3 = 0. The function w is a solution

of the system

G(1)
a w = J

(1)
03 w = 0 (a = 1, 2),

and is equal to x2
0 − x2

1 − x2
2 − x2

3.
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Finally, we arrive at ansatz (11), (12), where

θ0 = − ln |kx|, θ1 =
1
2
bx(kx)−1, θ2 =

1
2
cx(kx)−1,

θ3 = 0, w = (ax)2 − (bx)2 − (cx)2 − (dx)2.

Here, ax = aµx
µ, bx = bµx

µ, cx = xµx
µ, dx = dµx

µ, kx = kµx
µ, kµ = aµ + dµ, µ =

0, 1, 2, 3. According to the theorem, the reduced system (13) has the following coefficients
(14):

kµγ = 4wgµγ − (aµ − dµ + kµw)(aγ − dγ + kγw),

lµγ = 4[2gµγ − aµaγ + dµdγ − wkµkγ ],

mµγ = −2kµkγ ,

gµνγ = ε(gµγ(aν − dν + kνw) + gνγ(aµ − dµ + kµw) − 2gµν(aγ − dγ + kγw),

hµνγ =
3
2
ε(gµγkν − gµνkγ),

(15)

where ε = 1 for kx > 0 and ε = −1 for kx < 0, µ, ν, γ = 0, 1, 2, 3. We did not succeed in
finding general solutions of system (13), (15). Nevertheless, we obtain a particular solution
of these equations. The idea of our approach to integration of this system is rather simple
and quite natural. It is a reduction of this system by the number of components with the
aid of an ad hoc substitution. Let

Bµ = bµe1f(w) + cµe2g(w), (16)

where e1 = (1, 0, 0), e2(0, 1, 0), f and g are arbitrary smooth functions. Then the
corresponding equations have the form

4wf̈ + 8ḟ + e2g2f = 0, 4wg̈ + 8ġ + e2f2g = 0. (17)

System (17) with the substitution f = g = u(w) reduces to

wü + 2u̇ +
e2

4
u3 = 0. (18)

The ordinary differential equation (18) is the Emden-Fowler equation and the function
u = e−1w− 1

2 is its particular solution.
Substituting the result obtained into formula (16) and then into ansatz (11), (12) we

get a non-Abelian exact solution of YME (1):

Aµ = {e1(bµ − kµbx(kx)−1) + e2(cµ − kµcx(kx)−1)}×
×e−1{(ax)2 − (bx)2 − (cx)2 − (dx)2)}− 1

2 .

Analogously, we consider the rest of subalgebras of the conformal algebra.
For example, for the subalgebra 〈J12, P0, P3〉, we get the following non-Abelian solutions

of YME (1):

Aµ = e1kµZ0

[
i

2
eλ((bx)2 + (cx)2)

]
+ e2(bµcx− cµbx)λ,

Aµ = e1kµ

[
λ1((bx)2 + (cx)2)

eλ
2 + λ2((bx)2 + (cx)2)−

eλ
2

]
+

+e2(bµcx− cµbx)λ((bx)2 + (cx)2)−1.

Here Z0(w) is the Bessel function, λ1, λ2, λ2 = const.
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