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Abstract

We propose two approaches to find asymptotic solutions to systems of linear differen-
tial equations of the hyperbolic type with slowly varying coefficients in the presence
of rotation points.

In [1, 2], an asymptotic solution to a system of linear differential equations of the
hyperbolic type with slowly varying coefficients is constructed for the case of constant
multiplicity of the spectrum in the whole integration interval. In this paper, we propose
two approaches to find asymptotic solutions to systems of such a type in the presence of
rotation points.

Let us consider a differential equation of the form

εh
∂2u(t;x)
∂t2

= A1(t; ε)
∂2u

∂x2
+ εA2(t;x; ε)u(t;x) + εA3(t;x; ε)

∂u

∂t
(1)

with the initial condititons

u(0;x) = ϕ1(x),
∂u

∂t
(0;x) = ϕ2(x),

and the boundary conditions

u(t; 0) = u(t; l) = 0,

where 0 ≤ t ≤ L, 0 ≤ x ≤ l, ε(0 < ε ≤ ε0) is a small real parameter; u(t;x), ϕ1(x), ϕ2(x)
are n-dimensional vectors; Ak(t;x; ε), k = 1, 3 are matrices of order n× n, n ∈ N .

Let the following conditions be valid:
1) coefficients of system (1) admit expansions in powers of ε

A1(t; ε) =
∞∑

s=0

εsAs(t), Aj(t;x; ε) =
∞∑

s=0

εsA
(s)
j (t;x), j = 2, 3;

2) matrices As(t), A
(s)
j (t;x) are infinitely differentiable with respect to t ∈ [0;L] and

continuous in x ∈ [0; l] together with derivatives up to the second order inclusively; func-
tions ϕ1(x), ϕ2(x) are twice continuously differentiable;
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3) in the interval [0;L] for arbitrary r, s = 0, 1, . . ., the series

∞∑
k=1

∥∥∥∥∥d
rA

(s)
mk(t)
dtr

∥∥∥∥∥
2

,
∞∑

k=1

∥∥∥∥∥d
rC

(s)
mk(t)
dtr

∥∥∥∥∥
2

,

converge uniformly, where

A
(s)
mk(t) =

2
l

l∫
0

A
(s)
2 (t;x) sinωkx sinωmxdx;

C
(s)
mk(t) =

2
l

l∫
0

A
(s)
3 (t;x) sinωkx sinωmxdx.

We shall look for a solution of problem (1) in the form

u(t;x; ε) =
∞∑

k=1

vk(x)zk(t; ε), (1a)

where vk(x) is the orthonormal system

vk(x) =

√
2
l
sinωkx, ωk =

kπ

l
, k = 1, 2 . . . ,

and zk(t; ε) are n-dimensional vectors that are defined from the denumerable system of
differential equations

εh
d2zk(t; ε)
dt2

= −ω2
k

∞∑
s=0

εsA
(s)
1 (t)zk(t; ε)+

+ε
∞∑

m=1

( ∞∑
s=0

εsA
(s)
km(t)zm(t; ε) +

∞∑
s=0

εsC
(s)
km(t)

dzm(t; ε)
dt

)
,

(2)

with the initial conditions

zk(0; ε) = ϕ1,
dzk(0; ε)
dt

= ϕ2,

where

ϕ1 =

√
2
l

l∫
0

ϕ1(x) sinωkxdx, ϕ2 =

√
2
l

l∫
0

ϕ2(x) sinωkxdx.

Putting in (2) zk(t; ε) = q1k(t ε),
dzk(t; ε)
dt

= q2k(t; ε), we get the following system of
the first order

εh
dqk(t; ε)
dt

= Hk(t; ε)qk(t; ε) + ε
∞∑

m=1

Hkm(t; ε)qk(t; ε), (3)
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with the initial condition qk(0; ε) = xk0, where qk(t; ε), xk0 are 2n-dimensional vectors,
Hkm(t; ε), Hk(t; ε) are square (2n× 2n)-matrices of the form

qk(t; ε) =

∥∥∥∥∥q1k(t; ε)
q2k(t; ε)

∥∥∥∥∥ ,

Hkm(t; ε) =
∞∑

s=0

εsH
(s)
km(t) =

∥∥∥∥∥∥∥
0 0

∞∑
s=0

εsA
(s)
km(t)

∞∑
s=0

εsC
(s)
km(t)

∥∥∥∥∥∥∥ ,

Hk(t; ε) =
∞∑

s=0

εsH
(s)
k (t) =

∥∥∥∥∥∥∥∥
0 E

−
∞∑

s=0

ω2
kε

sAs(t) 0

∥∥∥∥∥∥∥∥
.

Let roots of the characteristic equation

det
∥∥∥H(0)

k (t)− λ(i)
k (t)E

∥∥∥ = 0, k = 1, 2 . . . , i = 1, 2n,

for the previous system coincide at the point t = 0 and be different for t ∈ (0;L] (i.e.,
t = 0 is a rotation point of system (3)). The following theorem tells us about the form of
a formal solution of system (3).

Theorem 1. If conditions 1)–3) are valid and roots of the equation

det
∥∥∥H(0)

k (t) + εH(1)
k (t)− λk(t; ε)E

∥∥∥ = 0

are simple ∀ t ∈ [0;L], then system (3) has the formal matrix solution

Qk(t; ε) = Uk(t; ε) exp


 1
εh

t∫
0

Λk(t; ε)dt


 , (4)

where Uk(t; ε), Λk(t; ε) are square matrices of order 2n, that are presented as formal series

Uk(t; ε) =
∞∑

r=0

εrU
(r)
k (t), Λk(t; ε) =

∞∑
r=0

Λ(r)
k (t). (5)

Proof. Hawing substituted (4), (5) into (3), we get the following system of matrix equa-
tions

H
(1)
k (t; ε)U (0)

k (t; ε)− U (0)
k (t; ε)Λ(0)

k (t; ε) = 0, (6)

H
(1)
k (t; ε)U (s)

k (t; ε)− U (s)
k (t; ε)Λ(0)

k (t; ε) = −U (0)
k (t; ε)Λ(s)

k (t; ε) +B(s)
k (t; ε), (7)

where

B
(s)
k (t; ε) =

s−1∑
r=1

U
(r)
k (t; ε)Λ(s−r)

k (t; ε) +
∂U

(s−h)
k (t; ε)
∂t

−

−
s∑

r=2

H
(r)
k (t; ε)U (s−r)

k (t; ε)−
s−1∑
r=1

H
(r)
km(t; ε)U

(s−r)
k (t; ε),

H
(1)
k (t; ε) = H(0)

k (t) + εH(1)
k (t).
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It follows from the conditions of the theorem that there exists a nonsingular matrix
Vk(t; ε) such that

H
(1)
k (t; ε)Vk(t; ε) = Vk(t; ε)Λk(t; ε),

where

Λk(t; ε) = diag {λ1k(t; ε), . . . , λνk(t; ε)} , ν = 2n.

Multiply (6) and (7) from the left by the matrix V −1
k (t; ε) and introduce the notations

P
(s)
k (t; ε) = V −1

k (t; ε)U (s)
k (t; ε), F

(s)
k (t; ε) = V −1

k (t; ε)B(s)
k (t; ε).

Finally, we obtain the system

Λk(t; ε)P
(0)
k (t; ε)− P (0)

k (t; ε)Λ(0)
k (t; ε) = 0,

Λk(t; ε)P
(s)
k (t; ε)− P (s)

k (t; ε)Λ(0)
k (t; ε) = P (0)

k (t; ε)Λ(s)
k (t; ε) + F (s)

k (t; ε).
(8)

Let us put here P (0)
k (t; ε) = E. Then Λ(0)

k (t; ε) = Λk(t; ε). From (8), we determine
Λ(s)

k (t; ε) = −F (s0)
k (t; ε), where F (s0)

k (t; ε) is a diagonal matrix that consists of diagonal
elements of the matrix F (s)

k (t; ε). Elements P (s)
k (t; ε) that are not situated on the main

diagonal, are determined by formulas

{
P

(s)
k (t; ε)

}
ij
=

{F (s)
k (t; ε)}ij

λik(t; ε)− λjk(t; ε)
, i 
= j, i, j = 1, 2n,

and diagonal elements
{
P

(s)
k (t; ε)

}
ii
= 0. The theorem is proved.

In investigating formal solutions, it has been shown that the following asymptotic
equalities ave valid for t ∈ [0;Lε]:

P
(s)
k (t; ε) = O

(
1
εα1

)
, Λ(s)

k (t; ε) = O
(

1
εα2

)
,

where α1, α2 are positive numbers, and t ∈ (Lε;L], then P (s)
k (t; ε) and Λ(s)

k (t; ε) are
bounded for ε → 0. Let us consider the character of formal solutions in the sense [3].
Let us write down the p-th approximation

qkp(t; ε) = Qkp(t; ε)ak(ε),

where

Qkp(t; ε) = Ukp(t; ε) exp


 1
εh

t∫
0

Λkp(t; ε)dt


 ,

Ukp(t; ε) =
p∑

m=1

εmU
(m)
k (t; ε), Λkp(t; ε) =

p∑
m=1

εrΛ(m)
k (t; ε),
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ak(ε) is an arbitrary constant vector. Having substituted the p-th approximation of solu-
tions (4) in the differential operator

Mqk ≡ εhdqk
dt

−Hk(t; ε)qk(t; ε) + ε
∞∑

m=1

Hkm(t; ε)qk(t; ε),

and taking into account (6), (7), we obtain

Mqkp(t; ε) = O
(
εp+1

)
Ykp(t; ε) exp


 1
εh

t∫
0

Λkp(t; ε)dt


 ,

where

Ykp(t; ε) = O
(
1
εβ

)
, β > 0 for t ∈ [0;Lε],

Ykp(t; ε) = O(1), for t ∈ [Lε;L],

Let, in addition, the following condititons are valid:
4) Reλik(t; ε) < 0 ∀ t ∈ [0;L];
5) ReΛ(p)

k (t; ε) < 0; for h = 1, ∀ t ∈ [0;Lε].
Then there exists εk1 (0 < εk1 < ε0) such that, for all t ∈ [0;L], the asymptotic equality

Mqkp(t; ε) = O(εp) is fulfilled. The following theorem is true.

Theorem 2. If the conditions of Theorem 1 and conditions 4), 5) are fulfilled, and for
t = 0, qkp(0; ε) = qk(0; ε), where qk(t; ε) are exact solutions of system (3), then, for every
Lk > 0, there exist constants Ck > 0 not depending on ε and such that, for all t ∈ [0;L]
and ε ∈ (0; εk1], the following inequalities

‖qkp − qk‖ < Ckε
p+1−h− 1

2n

are fulfilled.

Proof. Vector functions yk(t; ε) = qk(t; ε)− qkp(t; ε) are solutions to the equations

εh
dyk
dt

= Hk(t; ε)yk +O
(
εp+1

)
+

∞∑
m=1

Hkmyk.

With the help of the transformation

yk(t; ε) = Vk(t; ε)zk(t; ε),

we reduce the latter system to the form

εh
dzk
dt

= (Λk(t; ε) + εB1k(t; ε)) z(t; ε) +O
(
εp+1− 1

2n

)
. (9)

Let us replace system (9) by the equivalent system of integral equations

zk(t; ε) =

t∫
0

exp


 1
εh

t∫
t1

Λk(s; ε)ds


 (

Bk(t; ε)zk(t; ε) +O
(
εp+1−h− 1

2n

))
.
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Let us bound ‖zk(t; ε)‖:

‖zk(t; ε)‖ ≤
t∫

0

∥∥∥∥∥∥exp

 1
εh

t∫
t1

Λk(s; ε)ds




∥∥∥∥∥∥
(
‖Bk(t; ε)‖ ‖zk(t; ε)‖+

∥∥∥O (
εp+1−h− 1

2n

)∥∥∥)
.(10)

Since ∥∥∥∥∥∥exp

 1
εh

t∫
t1

Λk(s; ε)ds




∥∥∥∥∥∥ ≤ 1, ∀ t ∈ [0;L],

‖Bk(t; ε)‖ ≤ C1k

εα
, α > 0, ∀ t ∈ [0;Lε];∥∥∥O (

εp+1−h− 1
2n

)∥∥∥ ≤ C2kε
p+1−h− 1

2n ,

we have

‖zk(t; ε)‖ ≤ C3k

t∫
0

‖zk(t1; ε)‖dt1 + C2kLε
p+1−h− 1

2n ,

where C3k = C1k/ε
α.

Using the Gronwall-Bellman lemma, we get the inequality

‖zk(t; ε)‖ ≤ Ckε
p+1−h− 1

2n .

Then

‖yk(t; ε)‖ = ‖qk − qkp‖ ≤ ‖Vk(t; ε)‖ · ‖zk‖ ≤ Ckε
p+1−h− 1

2n .

The theorem is proved.

The other approach to constructing an asymptotic solution is based on the ”joining”
of solutions in a neighbourhood of a rotation point with solutions that are constructed
outside this neighbourhood. For this purpose, we suppose that the following conditions
are fulfilled:

4) the equation det ‖H(0)
k (0) − λk(t)E‖ = 0 has a multiple root with an elementary

divisor;
5) an matrix element{

T−1
k

(
dH

(0)
k (t)
dt

)
t=0

t

ε
+ P (1)

k (0)Tk

}
n1

differs from zero for all t ∈ [0;Lε], where Tk is a transformation matrix of the matrix
H

(0)
k (0);
6) matricesH(r)

k (t) andH(r)
km(t) are expandable in the interval t ∈ [0;Lε] into convergent

Taylor series

H
(r)
k (t) =

∞∑
s=0

1
s!
dsH

(r)
k (t)
dts

∣∣∣
t=0
ts, r = 0, 1, . . .

H
(r)
km(t) =

∞∑
s=0

1
s!
dsH

(r)
km(t)
dts

ts.

(11)
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To construct an expansion of a solution in the interval [0;Lε], let us introduce a new

variable t1 =
t

ε
. Let us pass to this variable in system (3). Having grouped together

coefficients of the same powers of ε on the right-hand side, we get

εh−1dqk
dt1

= Fk(t1; ε)qk(t; ε) + ε
∞∑

m=1

Fkm(t1; ε)qk(t; ε), (12)

where

Fk(t1; ε) =
∞∑

r=0

Fk(t1)εr, Fkm(t1; ε) =
∞∑

r=0

Fkm(t1)εr,

Fk(t1) =
∞∑

s=0

1
s!
dsH

(0;r−s)
k (t)
dts

ts1, Fkm(t1) =
r∑

s=0

1
s!
dsH

(0;r−s)
km

dts
ts1.

Roots of the characteristic equation for system (12) satisfy condition 4), therefore accord-
ing to [2], we can look for a solution of equation (12) for t ∈ [0;Lε] in the form

x
(i)
k (t; ε) = u(i)

k

(
t

ε
;µ

)
exp


 1
εh−1

t
ε∫

0

λ
(i)
k (t;µ)dt


 , (13)

where a 2n-dimensional vector u(i)
k (t1;µ) and the function λ

(i)
k (t1;µ) admit expansions

u
(i)
k (t1;µ) =

∞∑
r=0

µru
(i)
kr (t1), λ

(i)
k (t1;µ) =

∞∑
r=0

µrλ
(i)
kr (t1), µ = 2n

√
ε.

In the interval [Lε;L], roots λik(t), i = 1, 2n, of the characteristic equation for system
(3) are simple. Then, in this interval 2n, independent formal solutions to system (3) are
constructed in the form

y
(i)
k (t; ε) = v(i)

k (t; ε) exp


 1
εh

t∫
0

ξ
(i)
k (t; ε)dt


 , (14)

where v(i)
k (t; ε) is an n-dimensional vector and ξ(i)k (t; ε) is a scalar function which admit

the expansions

v
(i)
k (t; ε) =

∞∑
r=0

εrv
(i)
kr (t), ξ

(i)
k (t; ε) =

∞∑
r=0

εrξ
(i)
kr (t).

The functions u(i)
kr (t1), λ

(i)
kr (t1), v

(i)
kr (t), ξ

(i)
kr (t) are determined by the method from [2].

Denote by x(i)
kp(t; ε), y

(i)
kp (t; ε) p-th approximations of solutions (13), (14), that are formed

by cutting off the corresponding expansions at the p-th place. The p-th approximation of
a general solution for t ∈ [0;Lε] is of the form

xkp(t; ε) =
2n∑
i=1

x
(i)
kp(t; ε)aki(ε),
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and, in the interval [Lε;L]:

ykp(t; ε) =
2n∑
i=1

y
(i)
kp (t; ε)bki(ε),

where aki(ε), bki(ε) are arbitrary numbers. We choose numbers aki(ε) from the initial
condition for system (3), that is equivalent to the relation xkp(0; ε) = x0k. Let us ”join”
the constructed p-th approximations xkp(t; ε), ykp(t; ε) at the point t = Lε. We can do
this by choosing numbers bki(ε) in ykp(Lε; ε) so that the equality

xkp(Lε; ε) = ykp(Lε; ε). (15)

is fulfilled. Therefore, Theorem 2 is proved.

Theorem 3. If conditions 1)–5) and relation (15) are fulfilled, then the Cauchy problem
for system (3) has the p-th approximation of a solution of the form

qkp(t; ε) =

{
xkp(t; ε) for 0 ≤ t ≤ Lε;
ykp(t; ε) for Lε ≤ t ≤ L.

So, the theorem on the asymptotic character of formal solutions is proved.

Theorem 4. If the conditions of Theorem 3 are fulfilled, then the following asymptotic
bounds are valid:

‖qkp(t; ε)− qk(t; ε)‖ ≤ C · µp+3−2n−h sup
t∈[0;Lε]

exp


ε1−h

t
ε∫

0

2n(h−1)∑
m=0

µk Reλ(i)
km(t)dt




for t ∈ [0;Lε],

‖qkp(t; ε)− qk(t; ε)‖ ≤ C · εp+1−h sup
t∈[Lε;L]

exp


ε−h

t∫
Lε

h−1∑
m=0

εkξ
(i)
km(t)dt




for t ∈ [Lε;L].

So, we get asymptotics of equation (1) for the case, when the rotation point is some
inner point t = L of the interval [0;L] and also for two rotation points.

Now let us consider an inhomogeneous system of the hyperbolic type

εh
∂2u(t;x)
∂t2

= A1(t; ε)
∂2u

∂x2
+ g(t;x, ε) exp

(
iθ(t)
εh

)
(16)

where

g(t;x; ε) =
∞∑

s=0

εsgs(t;x).

With the help of transformation (1a), system (16) takes the form

εh
dqk
dt

= Hk(t; ε)qk(t; ε) + pk(t; ε) exp
(
iθ(t)
εh

)
, (17)
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where

pk(t; ε) =
∞∑

s=0

εsp
(s)
k (t) =

∥∥∥∥∥∥∥∥
0

∞∑
s=0

εsf
(s)
k (t)

∥∥∥∥∥∥∥∥
,

f
(s)
k (t) =

2
l

l∫
0

gs(t;x) sinωkxdx.

Let one of the following cases hold: 1) ”nonresonance”, when the function ik(t)(
k(t) =

dθ(t)
dt

)
is not equal to any root of the characteristic equation for all t ∈ [0;L];

2) ”resonance” when the function ik(t) is equal identically to one of roots of the char-
acteristic equation, for example, ik(t) = λ

(1)
k (t). Then, in the ”nonresonance” case, the

following theorem is valid.

Theorem 5. If the conditions of Theorem 1 are fulfilled, then, in the ”nonresonance”
case, system (17) has a partial formal solution of the form

qk(t; ε) =
∞∑

m=0

qk(t; ε) exp
(
iθ(t)
εh

)
, (18)

where qk(t; ε) is an n-dimensional vector that admits the expansion

qk(t; ε) =
∞∑

m=0

εmq
(m)
k (t). (19)

Proof. Having substituted (19), (18) in (17) and equated coefficients of the same powers
of ε, we get(

H
(0)
k (t)− ik(t)

)
q
(0)
k (t) = −p(0)k (t),

(
H

(0)
k (t)− ik(t)

)
q
(s)
k (t) =

dq
(s−h)
k

dt
− p(s)k (t)−

s∑
m=1

H
(m)
k (t)q(s−m)

k (t), s = 1, 2, . . . ,
(20)

Let us prove that system (20) has a solution. Since ∀ t ∈ [0;L] ik(t) 
= λ(j)
k (t), we have

det ‖H(0)
k (t)− ik(t)E‖ 
= 0, j = 1, 2n.

For this reason,

q
(0)
k (t) = −

(
H

(0)
k (t)− ik(t)E

)−1
P

(0)
k (t),

q
(s)
k (T ) =

(
H

(0)
k (t)− ik(t)E

)−1
(
dq

(s−h)
k

dt
− p(s)k (t)−

s∑
m=1

H
(m)
k (t)q(s−m)

k (t)

)
.

Theorem 5 is proved.

So, in the case of ”nonresonance”, the presence of a rotation point doesn’t influence
the form of a formal solution. In the ”resonance” case, the following theoren is true.
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Theorem 6. If the conditions of Theorem 1 are fulfilled, then, in the case of ”resonance”,
system (16) has a partial formal solution of the form

qk(t; ε) = qk(t; ε) exp
(
iθ(t)
εh

)
, (21)

where qk(t; ε) are 2n-dimensional vectors presented by the formal series

qk(t; ε) =
∞∑

m=0

εmq
(m)
k (t; ε). (22)

Proof. Substitute (21), (22) in (17) and determine vectors q(m)
k (t; ε),m = 0, 1 . . ., from

the identity obtained with the help of equalities(
H

(1)
k (t; ε)− ik(t)E

)
q
(0)
k (t; ε) = −P (0)

k (t),(
H

(1)
k (t; ε)− ik(t)E

)
q
(s)
k (t; ε) = h(s)

k (t; ε),
(23)

where

h
(s)
k (t; ε) = −p(s)k (t) +

∂p
(s−h)
k (t)
∂t

−
s∑

m=2

H
(m)
k (t)q(s−m)

k (t; ε).

Prove that the system of equations (23) has a solution. Since ik(t) coincides with a root
λ

(1)
k (t), but λik(t; ε) 
= ik(t), i = 1, 2n, we get det ‖H(1)

k (t; ε) − ik(t)E‖ 
= 0. Therefore,
from (23) we obtain

q
(0)
k (t; ε) = −

(
H

(1)
k (t; ε)− ik(t)E

)−1
p
(0)
k (t),

q
(s)
k (t) =

(
H

(1)
k (t; ε)− ik(t)E

)−1
h

(s)
k (t; ε), s = 1, 2, . . . .

Theorem 6 is proved.
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