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Abstract

We propose two approaches to find asymptotic solutions to systems of linear differen-
tial equations of the hyperbolic type with slowly varying coefficients in the presence
of rotation points.

In [1, 2], an asymptotic solution to a system of linear differential equations of the
hyperbolic type with slowly varying coefficients is constructed for the case of constant
multiplicity of the spectrum in the whole integration interval. In this paper, we propose
two approaches to find asymptotic solutions to systems of such a type in the presence of
rotation points.

Let us consider a differential equation of the form

0u(t; x) 0%u ou
h ) . e . .
g T — Al(ta 5)@ + 6142(ta X 8)U(t, (L‘) + SAS(ta X3 g)a (1)
with the initial condititons
ou
u(0;2) = ¢1(z),  50(052) = p2(2),

and the boundary conditions
u(t;0) = u(t;1) =0,

where 0 <t <L, 0<x <1, e(0 <e<egg) is a small real parameter; u(t; z), v1(x), p2(x)
are n-dimensional vectors; Ag(t;x;¢e), k = 1,3 are matrices of order n x n, n € N.

Let the following conditions be valid:

1) coefficients of system (1) admit expansions in powers of &

Atie) =Y A, Altme) = AP ), =23
s=0 5=0

2) matrices A4(t), Ag.s) (t;z) are infinitely differentiable with respect to ¢ € [0; L] and
continuous in z € [0;1] together with derivatives up to the second order inclusively; func-
tions ¢1(z), @2(z) are twice continuously differentiable;
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3) in the interval [0; L] for arbitrary r,s = 0,1, ..., the series

00 drA(S) ( 00 5)( )
kZ dtr kz dtr ’

converge uniformly, where

l
S 2 s . .
Aﬁnl(t) =7 /Aé ) (t; 2) sin wea sin wyzda;
0
) l
Cfrf])c(t) =7 /A:(),s)(t; x) sin wx sin wy,zrde.
0

We shall look for a solution of problem (1) in the form

hE

u(t;zie) = Y vp(w)zi(t; ), (la)

i
I

where vy (x) is the orthonormal system
2 k
vk(m):\/;sinwkx, wk:Tﬁ, k=1,2...,

and zi(t;€) are n-dimensional vectors that are defined from the denumerable system of
differential equations

d?z(t;€) =
h k\%s _ 2 s (5) .
ey = —wkZE AV ()2 (t; )+
. S @)
SA m(t; SO (1) —2 2 |
Z@ s+ S )
with the initial conditions
dz(0;¢)
0:¢) = P E)
2(05€) = 1, dt ¥2;5
where
1 !
2 2 _
w1 = \/;/901 )sinwgxdr, 2 = \/;/QOQ( ) sin wyzdz.
0 0
dz(t;
Putting in (2) zx(t;¢) = qux(t €), chgt’e) = qor(t;€), we get the following system of
the first order
dqi(t; e =
eh% = Hi(t;e)qr(t;e) +& Y Him(t;e)qr(t; o), (3)

m=1
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with the initial condition ¢ (0;€) = ko, where qi(t;€), o are 2n-dimensional vectors,
Hy(t;€), Hi(t;€) are square (2n x 2n)-matrices of the form

qx(t;e)

a(tie) = qor(t; €)

0 0
Him (t:€) ZesH(S ZESA © ngc(s :
0 E
Z ESH Z wieSA (t) 0

Let roots of the characteristic equation
det HH,S))@) - /\,(j)(t)EH —0, k=1,2..., i=12n,

for the previous system coincide at the point ¢ = 0 and be different for ¢t € (0; L] (i.e.,
t = 0 is a rotation point of system (3)). The following theorem tells us about the form of
a formal solution of system (3).

Theorem 1. If conditions 1)-3) are valid and roots of the equation
det HH,QO) (t) + eHD (t) — Ai(t: E)EH —0

are simple V't € [0; L], then system (3) has the formal matriz solution
t

Qu(t:€) = Us(t: €) exp Eih / At o)t | | (@)
0

where U (t;€), Ak(t;€) are square matrices of order 2n, that are presented as formal series

- ierU,@ (),  Ai(te) = f: AL (8). (5)
r=0 r=0

Proof. Hawing substituted (4), (5) into (3), we get the following system of matrix equa-
tions

B ()00 (1) — U (10)A (:2) = 0, (6)
HOY (t:0) U (t12) — U (1) A (116) = UV (1) A (£:2) + BY (8:2), (7)
where

s—1 (s—h)
_ ou t;
= E U]gr)(t;s)A](: T)(t;f:‘) 4+ —k 777 875( 76)—
r=1

s

s—1
=SB0 () = Y HL (42)US (1),
r=2 r=1

HY(te) = HO(t) + e B (1),
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It follows from the conditions of the theorem that there exists a nonsingular matrix
Vi(t; ) such that

H (1) Vit €) = Vit ) Ay(t: ),
where
Ai(t;e) = diag {Mk(t;e), ..., Ak(t;€)}, v =2n.
Multiply (6) and (7) from the left by the matrix V, '(¢;¢) and introduce the notations
PO(te) =V (60U (te), B (ko) = Vi (10) B ().
Finally, we obtain the system
A(t;e) PO (t;e) — PO (1;)A 0 (t;) = 0, .
M) P (e) = B ()AL (1) = RO ()AL (k) + B (852,

Let us put here PIEO) (t;e) = E. Then A,(CO) (t;e) = Ag(t;e). From (8), we determine
A,(f) (t;e) = —FIESO) (t;€), where F,gso)(t; g) is a diagonal matrix that consists of diagonal
elements of the matrix F) ,58) (t;¢). Elements P,ES) (t;¢) that are not situated on the main
diagonal, are determined by formulas

(s)
FO(t:0) )4 R —
P (t; _ U (B9 # =12
{ k (t’g)}ij Nik(t;€) — Ajr(t;e)’ P b= A

and diagonal elements {Plgs) (t; 5)} = 0. The theorem is proved.
(23

In investigating formal solutions, it has been shown that the following asymptotic
equalities ave valid for ¢t € [0; Le:

S 1 S 1
P -0() At - 0(),

where a, a9 are positive numbers, and ¢t € (Le; L], then P,is)(t;s) and Agj)(t;s) are
bounded for ¢ — 0. Let us consider the character of formal solutions in the sense [3].
Let us write down the p-th approximation

Qp(t;€) = Qup(t; e)ar(e),

where
Qup(t;e) = Unp(t; ) exp /Akp (t;e)dt |,

Ukp(t; €) Z amU(m (t;e), Agp(t;e) Z ETA
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ax(e) is an arbitrary constant vector. Having substituted the p-th approximation of solu-
tions (4) in the differential operator

— Hy(t;€)qr(t;€) +2 > Hpm(t:€)ar(t;2),

m=1

and taking into account (6), (7), we obtain

t

1
Mgy (t;e) =0 (apH) Yiep(t; €) o /Akp (t;¢) ,
0

where

1
Yip(t;e) =0 <€5) , B>0 forte]|0;Le,

Yip(t;e) = O(1), fort e [Le; L,
Let, in addition, the following condititons are valid:
4) Re \ix(t;e) <0Vt € [0; L];
5) ReA,gp)(t;a) < 0; for h =1, VYt € [0; Le].
Then there exists 1 (0 < ex1 < €9) such that, for all ¢ € [0; L], the asymptotic equality
Mqyp(t;€) = O(eP) is fulfilled. The following theorem is true.

Theorem 2. If the conditions of Theorem 1 and conditions 4), 5) are fulfilled, and for
t=0,qrp(0;¢) = qi(0;€), where qi(t;€) are exact solutions of system (3), then, for every
Ly, > 0, there exist constants Cy, > 0 not depending on € and such that, for all t € [0; L]
and € € (0;ex1], the following inequalities

lakp — qill < Cre?™ " 2a

are fulfilled.

Proof. Vector functions y(t;€) = qi(t;€) — qrp(t; ) are solutions to the equations

d
ch &9k Yk

i —Hk(t E)yk—i—O €p+1 ZHkmyk

With the help of the transformation
yk(t;€) = Vi(t;€)zi(t; €),
we reduce the latter system to the form

n ek
dt

Let us replace system (9) by the equivalent system of integral equations

— (Ap(t;€) + eBip(t; ) 2(t;€) + O (6”+1_—). 9)

zi(t;e) = /exp éh/Ak(s;e)ds (Bk(t; e)zk(t;e) + O (57’*1*}‘*%)).
0

t1
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Let us bound ||z (t; )]

t t

sz(t;e)HS/ exp gih/Ak(s;a)ds (1Bt ) 202l + |0 (71725 ) . (10)
0 t1

Since

t
1
exp E_h/Ak(S;E)dS <1, Vte]o;L],
t1

c
|By(t;)|| < 8_1; a >0, Vt e [0; Le;

1 1
O (gp—l—l—h—%) H < CopePti=h=3;

we have
t
la(t; )| < Cae / 2 (tr: )|ty + Cop LePH1 =35,
0

where C5i, = Cyp/e®.
Using the Gronwall-Bellman lemma, we get the inequality

|2kt )| < CrePti—h—mm
Then
_h_ L
lyi(t ) = llge — arpll < Vit )]l - 2kl < Cre? 2.
The theorem is proved.

The other approach to constructing an asymptotic solution is based on the ”joining”
of solutions in a neighbourhood of a rotation point with solutions that are constructed
outside this neighbourhood. For this purpose, we suppose that the following conditions
are fulfilled:

4) the equation det HH,EO)(O) — M (t)E]] = 0 has a multiple root with an elementary
divisor;

5) an matrix element

L (daE’®  t
{Tk ! ( 7 L + P07,

differs from zero for all ¢t € [0; Le], where T} is a transformation matrix of the matrix
) (0);

6) matrices H ,ET) (t) and H ,g:r)L (t) are expandable in the interval ¢ € [0; Le] into convergent
Taylor series

nl

0 s 77(7)
M NS LEH@))
HY () =Y 5 Lzot, r=0,1,...
o s (11)
S t
H(T)(t) — E l#“tsl

km sl dts
s=0
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To construct an expansion of a solution in the interval [0; Le], let us introduce a new

t
variable t; = —. Let us pass to this variable in system (3). Having grouped together

5
coefficients of the same powers of € on the right-hand side, we get

d

dtl = Fk(tl;f)qk(t; E) + e Z ka(tl; E)Qk(t;g)v (12)

m=1

where

Fi(ti;¢) ZFk t1)e",  Frm(ti;e) Zka t1)e",

1 dSH,io’“ ) 1 HY
Fi(t1) = Z R T Fim(t1) = Z ol Ttr
s=0 s=0
Roots of the characteristic equation for system (12) satisfy condition 4), therefore accord-

ing to [2], we can look for a solution of equation (12) for ¢ € [0; Le] in the form

t

i i 1 i
x;)(t; €) = ul(g) (;u) exp gl—_l/kl(g)(t; p)dt |, (13)
0

(4)

where a 2n-dimensional vector u,, (t1; 1) and the function )\](j) (t1; 1) admit expansions

751, ZM ukr (t1), 751, ZMT)\;(;« (t1), p= X

In the interval [Le; L], roots \ii(t), i = 1,2n, of the characteristic equation for system
(3) are simple. Then, in this interval 2n, independent formal solutions to system (3) are
constructed in the form

y,(f)(t; g) = () (t;€) exp /fk (t;e)dt |, (14)

where fu,(f) (t;€) is an n-dimensional vector and §,(:) (t;€) is a scalar function which admit

the expansions
o () )
- Ze’"vk; (1), sz t;e) ZS’EM
r=0

The functions u(l)(tl) )\,(;2 (t1), Ukr( ), §kr( ) are determined by the method from [2].

Denote by x,(ﬂz (t;¢), y,(;]z (t; €) p-th approximations of solutions (13), (14), that are formed
by cutting off the corresponding expansions at the p-th place. The p-th approximation of
a general solution for ¢ € [0; Le] is of the form

Tpp(t;€) Zxkp (t;e)agi(e
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and, in the interval [Le; L]:

Ukp(t; €) Zykp (t;€)bri(e

where ay;(e), by;(e) are arbitrary numbers. We choose numbers ag;(e) from the initial
condition for system (3), that is equivalent to the relation Ty, (0;e) = zoi. Let us ”join”
the constructed p-th approximations Ty, (t;€), Uy, (t;€) at the point ¢ = Le. We can do
this by choosing numbers by;(¢) in 7, (Le; €) so that the equality

Trp(Le;e) = Ypp(Les€). (15)
is fulfilled. Therefore, Theorem 2 is proved.

Theorem 3. If conditions 1)-5) and relation (15) are fulfilled, then the Cauchy problem
for system (3) has the p-th approzimation of a solution of the form

Tpp(tie) for 0 <t < Le;
ap(tie) =9 _
Yp(t;e) for Le <t < L.
So, the theorem on the asymptotic character of formal solutions is proved.

Theorem 4. If the conditions of Theorem 8 are fulfilled, then the following asymptotic
bounds are valid:

L
larp(t; €) — qi(t;€) | < C - P37 sup exp | €'~ h/ Z 1 Re M), (t)dt
te[0;Le]

fort € [0; Le,

Ly
lgip(t;e) = qr(t;e)| < C P17 sup exp f‘h/Z s (1)
te|Le; L] e m=0

fort € [Le; L.

So, we get asymptotics of equation (1) for the case, when the rotation point is some
inner point ¢ = L of the interval [0; L] and also for two rotation points.

Now let us consider an inhomogeneous system of the hyperbolic type

O%u(t; 0%u 10(t
ah% = Al(t;s)@ +g(t;x,e) exp ( E(h)) (16)

where

g(t;z;¢) Zagstx

With the help of transformation (1a), system (16) takes the form

oM — e E)an(t ) + a2 oxw (T ) (17)
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where

s=0

pe(tie) =S (1) = | L o0 |-
0

Let one of the following cases hold: 1) ”nonresonance”, when the function ik(t)
an(t
(kz(t) = %) is not equal to any root of the characteristic equation for all ¢t € [0; L];

2) "resonance” when the function ik(t) is equal identically to one of roots of the char-

acteristic equation, for example, ik(t) = )\,(i,l)(t). Then, in the "nonresonance” case, the
following theorem is valid.

Theorem 5. If the conditions of Theorem 1 are fulfilled, then, in the "nonresonance”

case, system (17) has a partial formal solution of the form

ar(tie) = ) qx(t;e) exp (@) ; (18)

m=0

where Gy (t;€) is an n-dimensional vector that admits the expansion

Glte) = > ema™ (1), (19)
m=0

Proof. Having substituted (19), (18) in (17) and equated coefficients of the same powers
of €, we get

(@) - k) 6" t) = "),

(0) (s) dg™ ~ () (5—m) (20)
(2@ — k) 47 () = Z— =0 = Y B 0" (1), s=1.2,...,
m=1

Let us prove that system (20) has a solution. Since V¢ € [0; L] ik(t) # /\,(Cj)(t), we have
det |HO(t) — ik(t)E|| #£0, j=T,2n.
For this reason,
0 0 . -1 0
@0 = - (10 - iE) PO,

~ (s—h) s
(1) = (5" (t) - ik(t)B) 1(“’;” - (1) - ZH,im><t>q,$‘m)<t>>.
m=1

Theorem 5 is proved.

So, in the case of "nonresonance”, the presence of a rotation point doesn’t influence
the form of a formal solution. In the ”"resonance” case, the following theoren is true.
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Theorem 6. If the conditions of Theorem 1 are fulfilled, then, in the case of "resonance”,

system (16) has a partial formal solution of the form
_ i0(t
qk(t;€) = qi(t;2) exp (%) ,

where Gy, (t;€) are 2n-dimensional vectors presented by the formal series

ng (m

Proof. Substitute (21), (22) in (17) and determine vectors q](gm) (t;e),m =0,1...,

the identity obtained with the help of equalities

(B 50) - ik(E) ¢ (1:2) = —P" 1),
(E e) — ik F) o) (1:2) = b (1),
where

S ap(s h) S m
W (t;e) = —pl (1) + T2 ZH ¢ (te).

(21)

(22)

from

(23)

Prove that the system of equations (23) has a solution. Since ik(t) coincides with a root
A1), but Ak (t;€) # ik(t), i = T,2n, we get det | HL (t;e) — ik(t)E|| # 0. Therefore,

from (23) we obtain

-1
o (te) = — (HO(0) — kWE) (@),
-1
o (t) = (B (52) —ikHE) P (e), s=12,....

Theorem 6 is proved.
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