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Abstract

A three-dimensional model of ice Ih based on the fiber bundle approach is presented.
A hybrid structure of ice consisting of the oxygen lattice with the P63/mmc crystal-
lographic symmetry and the hydrogen subsystem satisfying the Bernal-Fowler rules
is considered. Controllable change of the protons position at hydrogen bounds by
optoacoustic perturbation is discussed. Both classic and bispinor Hamiltonians are
proposed.

Forecasting intensive progress in microphysics as early as in 1959, R. Feynman has made
a presentation at the annual session of the American Physical Society under the symbolic
title ”There’s plenty of room at the bottom” [1]. He underlined that microcosm can
give in future practically unlimited possibilities for material technology and information
processing. But for achievement of practical results, it is necessary to overcome not a few
obstacles. And one of them is the gap between micro- and macrolevels which prevents
a direct contact without information losses and order distraction. Over the year, it was
clearly understood that control and information theory should play an important role in
microphysics progress as well as in molecular and quantum computing [2–7]. First of
all, proper modelling of hybrid systems must be developed. One of possible models is
presented here.

Hexagonal ice Ih was chosen as an object thanks to its wide spread in nature and because
it allows information processing at the molecular level. We start from the brief description
of the usual ice structure following the short but very consistent book of N. Maeno [8].
Hexagonal modification of ice exists under normal pressure and temperature T < −6 ◦C. It
has the crystallographic symmetry P63/mmc but only for the oxygen lattice, the hydrogen
subsystem is characterized by relative arbitrariness in protons’ distribution at hydrogen
bonds. So if the Bernal-Fowler rules are fulfilled, the protons have many variants of
distribution. These rules are the next:

1) exactly two protons are situated beside every oxygen atom,
2) exactly one proton is present at every hydrogen bond.
Mathematically, they can be expressed with some equations binding binary variables

for bistable proton positions at hydrogen bonds. This and another technique will be
demonstrated below.

One of possible dispositions of protons in the frame of an ice Ih elementary cell is
shown in Fig.1. Framework of the cell is composed of two mirror symmetric strata which
are based on local orthogonal triplets e1, e2, e3 (lower,right) and e′1, e′2, e′3 (upper, left)
with the origins situated at the endpoints of the vertical hydrogen bond. The triplets
are oriented towards middle points of tetrahedron edges which are connected with the
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Fig.1.

correspondent oxygen atoms. Hydrogen bonds geometrically are represented by vectors
fi, f ′i (i = 0, 1, 2, 3), so that

e1 =
1
2
(f1 + f0), e2 =

1
2
(f2 + f0), e3 =

1
2
(f3 + f0);

e′1 = −1
2
(f ′1 + f ′0), e′2 = −1

2
(f ′2 + f ′0), e′3 = −1

2
(f ′3 + f ′0);

f0 + f1 + f2 + f3 = 0, f ′0 + f ′1 + f ′2 + f ′3 = 0;

e1 + e2 + e3 = f0 = f ′0 = −(e′1 + e′2 + e′3);

f1 = e1 − e2 − e3, f2 = −e1 + e2 − e3, f3 = −e1 − e2 + e3;

f ′1 = −(e′1 − e′2 − e′3) = −5
3
e1 +

1
3
e2 +

1
3
e3 = −

(
f1 +

2
3
f0

)
,

f ′2 = −(−e′1 + e′2 − e′3) =
1
3
e1 −

5
3
e2 +

1
3
e3 = −

(
f2 +

2
3
f0

)
,

f ′3 = −(−e′1 − e′2 + e′3) =
1
3
e1 +

1
3
e2 −

5
3
e3 = −

(
f3 +

2
3
f0

)
.

Following the relations between vectors and having used the length of hydrogen bonds

d = |fi| =
∣∣f ′i ∣∣ = 0.276 nm, (i = 0, 1, 2, 3)

one can determine horizontal a and vertical h moduli of the hexagonal lattice:

a = |f2 − f3| = |a1| = |f3 − f1| = |a2| =
2
3

√
6d = 0.452 nm,

h = |a3| = |2f0 − f3 − f ′3| =
8
3
d = 0.736 nm.

Proton configuration can be specified by different methods. One of them was applied
in [6] to cubic ice Ic where protons’ positions have been determined by binary variables
zα(n) ∈ GF (2) (α = 0, 1, 2, 3;n ∈ Z3). Displacement of protons from middles of hydrogen
bonds could be expressed as follows:

xα(n) =
1
2
(−1)zα(n) = ±1

2
.
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It was found that the Bernal-Fowler rules could be written in the form of homogenous
equations

3∑
α=0

xα(n) = 0,
3∑

α=0

xα(n + eα) = 0 (n ∈ Z3),

where e0 = {0, 0, 0}, e1 = {1, 0, 0}, e2 = {0, 1, 0}, e3 = {0, 0, 1}.
These equations are linear relatively to xα(n) but not to zα(n). So definite selection

rules should be applied after all. This hidden nonlinearity becomes explicit when another
method is attracted.

Beforehand, let us make some notifications:
– near every node of the oxygen lattice, exactly 1 pair of protons can be found which

may occupy 4 hydrogen bonds (outcoming from the given node) by C2
4 = 6 different

possible variants;
– hydrogen dihedron Dα(n) (α− node’s number, n− elementary cell number) formed

by two unitary vectors r(1)
α (n) , r(2)

α (n) directed from the oxygen node to protons remains
scalar product 〈r(1)

α (n), r(2)
α (n)〉 = const in all 6 possible positions of its bisectrix unitary

vector dα(n) =
√

3
2

[
r(1)
α (n) + r(2)

α (n)
]
;

– dihedron bisectrix unitary vector dα(n) can be oriented at every vertex of an octa-
hedron inscribed in the tetrahedron surrounding a given node of the lattice if this is not
forbidden by neighboring dihedron positions;

– dihedron’s position is identically determined by the index λα(n) = 0, 1, . . . , 5 of
vector’s dα(n) projection on the horizontal plane.

Let us introduce in residue class ring Z6 characteristic functions for some of its subsets:

Φ(λα) =
{

0 (λ = 5, 0, 1)
1 (λ = 2, 3, 4)

=
{

0 when |λ| ≤ 1 (mod6)
1 when |λ| > 1 (mod6)

=

= {λ(mod2) + [λ(mod3)]2}(mod2);

Θ(λα) =
{

0(λ = 0, 2, 4)
1 (λ = 1, 3, 5)

= λ(mod2);

Φ+(λα) = Φ(λα + 2), Φ−(λα) = Φ(λα − 2).

(1)

Now the Bernal-Fowler rules have an explicitly nonlinear character as follows:

Φ[λ1(n)] − Φ[λ2(n)] = 0,

Φ+[λ1(n − ν1)] − Φ+[λ2(n)] = 0,

Φ−[λ1(n)] − Φ−[λ2(n − ν2)] = 0,

Θ[λ1(n − ν3)] + Θ[λ2(n)] = 0.

(2)

Here, ν1 = {1, 0, 0}, ν2 = {0, 1, 0}, −ν3 = {0, 0, 1}, n = {n1, n2, n3} (ν1, ν2, ν3,n ∈
ZN1×ZN2×ZN3 ⊂ Z3), λ1(n) corresponds to the lower end of a sloping hydrogen bond and
λ2(n) – to upper one. Every solution of this system conforms to set of mutually crossing
contours covering the whole oxygen lattice – so-called Bernal-Fowler fibers oriented in
accordance with protons’ shifts.
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There is no possibility to find a general solution of system (2) because unknown
variables are determined in the ring which has zero divisors 2 and 3. (In this ring,
2 × 3 = 6 = 0(mod6).) Although the number of Diophantine equations in system (2) is
twice that of unknowns, its solution exists. For example, λ1(n1, n2, n3) = λ2(n′1, n′2, n′3) =
λ2(n1, n2, n3 + 1) + 3(mod6). Quantity of solutions is rapidly growing with the num-
bers N1, N2, N3. As an alternative to unknowns λi, one may choose pairs of unknowns
σi = λi(mod2) and µi = λi(mod3) which have been mentioned in (1). Their totality pre-
cisely corresponds to the number of equations (2) but, regrettably, two-moduli arithmetics
appears in this case.

So it remains to take advantage of the recurrent procedure for finding solutions. For
the clear presentation, each fragment (lower or upper) of the elementary cell can be imaged
as a 6-pole Π(n). Let us code an input x = {x1, x2, x3} and outputs x′ = {x′1, x′2, x′3} =
{x′1(n− ν1), x′2(n− ν2), x′3(n− ν3)} by binary integers from the ring Z2. For shifts X,Y, Z
which can be ±1, it immediately follows

X = (−1)x1 , (−Y ) = (−1)x2 , Z = (−1)x3

corresponding to the second ice rule:

X2 = Y 2 = Z2 = (−1)2xi = 1 (i = 1, 2, 3).

Meanwhile making use of the first ice rule, one can obtain for the Π(n) three-sheeted
mapping

Π : Z3
2 = Z2 × Z2 × Z2 → Z2,

x′i = πµi (x) (0 = 1, 2, 3; 1 ≤ µ ≤ m(x) ≤ 3)

which is represented in Table 1.

Table 1

N x π1
i π2

i π3
i m(x)

0 000 000 —– —– 1
1 100 100 010 001 3
2 010 100 001 —– 2
3 110 110 101 011 3
4 001 100 010 001 3
5 101 110 011 —– 2
6 011 110 101 011 3
7 111 111 —– —– 1

Apparently, the total number of different sorts of transformation is 22 × 34 = 324,
but when x is fixed, m(x) ≤ 3. By the way, it is easy to calculate the total amount
of variants for the protons’ distribution in one half-cell as the sum of all possible m(x):
2 + 2 × 2 + 4 × 3 = 18.

The algorithm is being built in the following manner. For a given rectangular paral-
lelepiped P having S1 × S2 × S3 layers in three orthogonal directions in the basis

b1 =
1
2
(a1 + a2), b2 = a1 − a2, b3 = a3,
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one can fix definite mappings from Table 1 for all half-cells of P. Boundary conditions
must be determined for 4 its bounds: 1 face, 2 sides and 1 lower:

x(s)
∣∣
s1=0 = X1(s2, s3), x(s)

∣∣
s2=0 = X

(0)
2 (s1, s3),

x(s)
∣∣
s2=s2−1 = X

(1)
2 (s1, s3), x(s) |s3=0 = X3(s1, s2).

Because all half-cells in each layer are chess-ordered in the basis b1,b2,b3, their inputs
are fully independent in every row. Thereby, a complete decomposition of vertical columns
is assured and wide parallelizing of output calculations is achieved for all layers. When
the mapping distribution is fixed, there is possible to realize 22S3 + 1 states with various
inputs x, y, z in each column. In its turn, provided inputs are given in one column, one can
obtain not more than 3S3 states because, in every half-cell, maximum 3 mappings can be
permitted. So the upper limit of the possible states quantity in a column is 22S3+1 × 3S3 ,
and respectively, for a whole parallelepiped P with dimensions S1 × S2 × S3 (in half-cell
units) the upper limit of the possible states number is determined as

M = 2S1S2(2S3+1) × 3S1S2S3 .

If bonds between half-cells are ignored, each of them gives 2×32 combinations of protons’
distributions as have been mentioned above. For S1 × S2 × S3 half-cells, it turns out that
the upper limit of the states number in this case is

M0 = 2S1S2S3 × 32S1S2S3 .

Comparison M0 with M shows that, when S3 � 1, bonding between half-cells sufficiently
decreases the quantity of possible configurations for the proton subsystem. As can be seen
directly, the proposed algorithm is exhausting and does not give repetitions of variants.

Now the protons’ subsystem information entropy S can be estimated:

S ≤ log2M = S1S2S3

[
log2 3 + 2

(
1 +

1
2S3

)]
.

Hence, specific entropy per one half-cell has the upper limit as follows:

S ≤ lim
S1→∞

lim
S2→∞

lim
S3→∞

log2M

S1S2S3
= 2 + log2 3 � 3, 6.

Without bounding between half-cells, specific entropy is found to be noticably greater:

S0 = lim
S1→∞

lim
S2→∞

lim
S3→∞

log2M

S1S2S3
= 1 + 2 log2 3 � 4, 2.

A control problem for the hydrogen subsystem consists in determining and realization
of a necessary sequence in the state space of all possible protons configurations. One
con consider this sequence as a one-parameter subgroup of the structural group G of a
fiber bundle (XF , P

t
F , B, F ) with the orbit space XF = (X × F )/G PF→ B where the base

B and layer F are the state space of protons and cotangent space, respectively. From
physical viewpoint, it must be required to satisfy the stability of mapping in order to
secure information processing from the destruction caused by dynamic chaotization.

Controlling action on the proton subsystem from the oxygen lattice deformations is
effected by variations of the potential function. As this takes place, excitation is supposed
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not so much to cause ionizing effects and proton transport but sufficient for displacements
of protons along hydrogen bonds where they are situated. Electron shell deformations will
be considered as adiabatic. Taking into account all these conditions, let us construct such
a nonstationary Hamiltonian that can be decomposed by a periodically time-dependent
orthogonal canonical transformation into a direct sum of Hamiltonians for bistable non-
linear oscillators. Every step of transformation in the state space of the proton subsystem
should correspond to a definite step of rearrangement of the potential well for protons
where they are dislocated.

One of the simplest forms of bistable potential is the polynomial

U(q) =
1
2
q2(q2 − 2),

and a necessary Hamiltonian has the form

H =
1
2
p2 +

1
2
q2(q2 − 2).

So, if energy E is fixed, the time dependence q(t) can be found from the elliptic integral

t− t0 =

q∫
q0

dq1√
2E + 2q21 − q41

and finally expressed in terms of the Jacobi function, but it is unnecessary to demonstrate
this here.

The Hamiltonian of a direct sum of m such oscillators

H =
m∑
µ=1

Hµ =
1
2

m∑
µ=1

(p2
µ − 2q2µ + q4µ)

is to be subjected to an orthogonal pointwise transformation presented by the time de-
pendent generating function

W (p,Q, t) =
m∑
µ=1

m∑
v=1

Tµv(t)pµQv.

Its partial derivatives give expressions of old momemnta pµ and coordinates qµ in terms
of new ones Pµ, Qµ :

P =
∂

∂Q
W (p,Q, t), q =

∂

∂p
W (p,Q, t),

pµ =
∑
v

Tµv(t)pv, qµ =
∑
v

Tµv(t)Qv.

A new Hamiltonian which differs from the old one by the item
∂

∂t

∣∣
p=p(P ) W (p,Q, t)

appears as

∼
H (P,Q, t) =

1
2

∑
µ

P 2
µ −
∑
µ

Q2
µ +

1
2

∑
µ

[∑
v

Tµv(t)Qv

]4

+
∑
µ

∑
v

.
Sµv (t)PµQv,
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where Sµv(t) are elements of the skew-symmetric matrix
∧
S (t) = ln

∧
T (t) and

∧
T (t) =

{Tµv(t)},
.
Sµv (t) =

d

dt
Sµv(t).

As soon as, in the ice Ih lattice, each proton has not more than 6 and not less than 1
protons neighboring with it, the sum over the index v in every term of the new Hamiltonian
is to be calculated in the limits 1 ≤ v ≤ l, 2 ≤ l ≤ 7 (including a given proton) because
another terms vanish. Number l depends on a phonon oscillations mode of the oxygen
lattice.

Just above, the example of a vector fiber bundle model was demonstrated. Quite
another way can be proposed on the base of a fiber bundle which has the nonabelian
structure group SU(2). If the well-known epimorphism SU(2) → SO(3) and trace metric

〈
∧
H i,

∧
Hj〉 =

1
2
Tr

∧
H i

∧
Hj are attracted, one can use the Pauli basis

∧
h1=

(
0 1
1 0

)
,

∧
h2=

(
0 −i
i 0

)
,

∧
h3=

(
1 0
0 −1

)
,

〈∧
hi,

∧
hj

〉
= δij (i, j =1, 3)

in a linear space of traceless matrices Hi ∈ L. Then, vectors di representing, for instance,

a protons’ i-dihedron dipole moment can be imaged as vector operators
∧
di∈ L. Corre-

sponding scalar product of di over a hydrogen bond vector
∧
nij may have a form

(di,nij) = 〈χi|(dinij)|χi〉

where χi are spinors.
The energy of dipole interaction between protons’ dihedrons can be expressed as follows:

V = J0

∑
(i,j)∈Γ

[ε(didj) − 3(dinij)(djnij)] .

The sum must be accomplished by the whole interactions graph Γ. Here, J0 is the en-
ergy constant and ε < 1 is a coefficient which allows taking into account the nondirect
interaction between proton’ dihedrons caused by oxygen electron shells. Going to the rep-
resentation of a dihedron vector by corresponding spin matrices oriented along previously
introduced basis vector e3 (lower) and e′3 (upper), one can obtain the formula

V = J0

∑
(i,j)∈Γ

〈χiχj |(
∧
H ij)|χiχj〉,

where bispinors χiχj correspond to pairs of dihedrons situated at the endpoints of each

hydrogen bond. In our case, Hamiltonians
∧
H ij are the next:

∧
H ij= (ε− 3 cos2 νij)

∧
σ
z

i
∧
σ
z

j .

Fortunately, for the ice Ih structure, all the angles νij between bonds’ vectors nij and e3

(or e′3) are identical and cos2 νij =
1
3
. So Hamiltonians have the very simple expression

∧
H ij= (ε− 1)

∧
σ
z

i
∧
σ
z

j .
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If indirect interaction was absent, all
∧
H ij were zero, but the presence of oxygen atoms

makes ε much more less than unity (0 < ε� 1). Thus,

V = J
∑

(i,j)∈Γ

〈χiχj |
∧
σ
z

i
∧
σ
z

j |χiχj〉,

where J = (ε− 1)J0 < 0. Finally, let us present the Hamiltonian in the explicit form

∧
H= J

∑
(i,j)∈Γ

[
∧
σ
z

1 (n)
∧
σ
z

2 (n)+
∧
σ
z

2 (n)
∧
σ
z

3 (n)+
∧
σ
z

3 (n)
∧
σ
z

4 (n)+
∧
σ
z

1 (n)
∧
σ
z

4 (n − ν3)+

+
∧
σ
z

1 (n)
∧
σ
z

2 (n − ν1)+
∧
σ
z

1 (n − ν2)
∧
σ
z

2 (n)+
∧
σ
z

3 (n)
∧
σ
z

4 (n − ν2)+
∧
σ
z

3 (n − ν1)
∧
σ
z

4 (n)]

using notations

n = {n1, n2, n3}, ν1 = {1, 0, 0}, ν2 = {0, 1, 0}, ν3 = {0, 0, 1},
∧
σ
z

α (n) is the spin operator of a dihedron dα(n) in the elementary cell with the number n.
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