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Abstract

The Galilean covariance of nonrelativistic quantum mechanics is generalized to an
infinite parameter group of acceleration transformations called the Euclidean line
group. Projective representations of the Euclidean line group are constructed and the
resulting unitary operators are shown to implement arbitrary accelerations. These
unitary operators are used to modify the time-dependent Schrödinger equation and
produce the quantum mechanical analog of fictitious forces. The relationship of accel-
erating systems to gravitational forces is discussed. Solutions of the time-dependent
Schrödinger equation for time varying, spatially constant external fields are obtained
by transforming to appropriate accelerating reference frames. Generalizations to rel-
ativistic quantum mechanics are briefly discussed.

Infinite-dimensional groups and algebras continue to play an important role in quantum
physics. The goal of this work, which is dedicated to the memory of Wilhelm Fushchych, is
to look at some special representations of a group E(3), called the Euclidean line group in
three dimensions, the group of maps from the real line to the three-dimensional Euclidean
group. The motivation for studying such a group arises from a long-standing question
in quantum mechanics, namely how to do quantum mechanics in noninertial reference
frames. Now to “do” quantum mechanics in noninertial frames means constructing unitary
operators that implement acceleration transformations. We will show that representations
of E(3) on an appropriate Hilbert space provide the unitary operators that are needed to
implement acceleration transformations.

The natural Hilbert space on which to construct representations of E(3) is the Hilbert
space of a single particle of massm and spin s, Hm,s, which itself is the representation space
for the central extension of the Galilei group [1]. Thus, the central extension of E(3) should
contain the central extension of the Galilei group as a subgroup, and moreover, under the
restriction of the representation of E(3) to that of the Galilei group, the Hilbert space
should remain irreducible. The representations of E(3) will be obtained from the generating
functions of the corresponding classical mechanics problem. These generating functions
carry a representation of the Lie algebra of E(3) under Poisson bracket operations; using
the correspondence between Poisson brackets in classical mechanics and commutators in
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quantum mechanics gives the desired representation, which is readily exponentiated to give
the representation of E(3). Moreover, this procedure automatically gives a representation
of the central extension of E(3).

Once the unitary operators implementing acceleration transformations on Hm,s are
known, it is possible to compute the analog of fictitious forces in quantum mechanics
by applying the acceleration operators to the time-dependent Schrödinger equation. The
resulting fictitious forces are proportional to the mass of the particle, and for linear accel-
erations, proportional to the position operator. This means that in a position represen-
tation, fictitious forces can simulate constant gravitational forces, which is the principle
of equivalence in nonrelativistic physics. As will be shown, it is also possible to explicitly
solve the time-dependent Schrödinger equation for such potentials by transforming to an
appropriate noninertial frame.

We begin by looking at acceleration transformations that form the Euclidean line group
E(3). Consider the acceleration transformations

�x→ �x ′ = �x+ �a(t) (linear acceleration),

�x→ �x ′ = �R(t)�x (rotational acceleration),
(1)

where R(t) ∈ SO(3) is a rotation and �a(t) ∈ R3 is a three-dimensional translation. Both of
these types of transformations are indexed by the time parameter t, so that the Euclidean
line group consists of maps R → E(3), from the real line to the Euclidean group in three
dimensions. Such an infinite-dimensional group contains all transformations that preserve
the distance between two points in the three-dimensional space (�x− �y )2.

Linear accelerations contain translations and Galilei boosts of the Galilei group,

�x ′ = �x+ �a (translations),

�x ′ = �x+ �vt (Galilei boosts),
(2)

as well as such acceleration transformations as constant accelerations,

�x ′ = �x+
1
2
�at2 (constant accelerations). (3)

Similarly, rotational accelerations contain constant rotations of the Galilei group as
well as constant angular velocity rotations,

R(t) = R(n̂, ωt), (4)

where n̂ is the axis of rotation and ωt is the angle of rotation.
Given the group E(3), we wish to find its unitary projective representations on the

Hilbert space for a nonrelativistic particle of mass m and spin s, namely Hm,s = L2(R3)×
V s, where V s is the 2s+1 dimensional complex vector space for a particle of spin s [1]. In
momentum space, the wave functions ϕ(�p,ms) ∈ Hm,s transform under the Galilei group
elements as

(U�aϕ)(�p,ms) = e−i �P ·�a/�ϕ(�p,ms) = e−i�p·�a/�ϕ(�p,ms),

(U�vϕ)(�p,ms) = e−i �X·m�v/�ϕ(�p,ms) = ϕ(�p+m�v ),

(URϕ)(�p,ms) = e−i �J ·n̂θϕ(�p,ms) =
+s∑

m′
s=−s

Ds
msm′

s
(R)ϕ(R−1�p,m′

s),

(5)
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where R ∈ SO(3) is a rotation, and Ds
msm′

s
(R) is a Wigner D function. �P , �X, and �J are,

respectively, the momentum, position, and angular momentum operators. The goal is to
find U�a(t) and UR(t) as unitary operators on Hm,s, where �a(t) and R(t) are elements of
E(3).

In Ref. [2], we have shown how to calculate U�a(t) and UR(t) by looking at the generat-
ing functions for a particle in classical mechanics and then changing Poisson brackets to
commutators in quantum mechanics. Here we will illustrate the basic idea by considering
linear accelerations in only one spatial dimension, namely

x′ = x+ a(t). (6)

A generating function for such a transformation is given by

F (x, p′) = (x+ a(t))p′ −mxȧ(t),

x′ =
∂F

∂p′
= x+ a(t),

p =
∂F

∂x
= p′ −mȧ(t), ȧ(t) :=

da

dt
,

H ′(x′, p′) = H(x, p) +
∂F

∂t
.

(7)

To get the operators that generate various acceleration transformations, we write a(t)
as a power series in t,

a(t) =
∞∑

n=0

ant
n

n!
, (8)

where the expansion coefficients an play the role of group parameters for the one-para-
meter subgroups of linear accelerations. Note that a0 generates spatial translations, while
a1 generates Galilei boost transformations [see Eq. (2)].

For each one-parameter subgroup specified by an, we compute the infinitesimal gener-
ating functions An(x, p), which, because of the group properties of E(3), will close under
Poisson bracket operations. An(x, p) comes from the generating function Fn(x, p′ ) relative
to the group element an:

Fn(x, p′) =
(
x+

an

n!
tn

)
p′ −mx ant

n−1

(n− 1)!
,

x′ = x+
ant

n

n!
,

p′ = p+m
an

(n− 1)!
tn−1,

An(x, p) =
tn

n!
p− mtn−1

(n− 1)!
x , n = 1, 2, . . .

A0(x, p) = p.

(9)

Then the Poisson brackets of An with An′ close to give

{An, An′} =
mtn+n′−1

(n− 1)!(n′ − 1)!

(
1
n
− 1
n′

)
, n, n′ 	= 0,

{An, A0} = − mtn−1

(n− 1)!
.

(10)
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Since A0 generates spatial translations, which are related to the momentum operator, we
want the canonical commutation relations {x, p} = 1. But from Eq. (10) it is seen that
{A1, A0} = −m. So define

Bn := − 1
m
An , n = 1, 2, . . .

B0 := A0,
(11)

which gives

{Bn, Bn′} =
tn+n′−1

m(n− 1)!(n′ − 1)!

(
1
n
− 1
n′

)
, n, n′ 	= 0,

{Bn, B0} =
tn−1

(n− 1)!
.

(12)

In particular, {B1, B0} = 1. These equations are the starting point for introducing accel-
eration operators into quantum mechanics, for they provide a projective representation of
the Lie algebra of the one-dimensional linear accelerations, in which commutators replace
Poisson brackets. That is

Bn → Xn := tn−1

(n−1)! i�
∂
∂p − tn

mn! p , n = 1, 2, . . .

B0 → P = p,

[Xn, Xn′ ] =
i�tn+n′−1

m(n− 1)!(n′ − 1)!

(
1
n
− 1
n′

)
I , n, n′ 	= 0,

[Xn, P ] =
i�tn−1

(n− 1)!
I,

[X1, P ] = i�I,

(13)

where I is the identity operator.
But X1 = i�(∂/∂p) − (t/m)p is not the usual position operator, X = i�(∂/∂p). The

appendix of Ref. [2] shows that X1 is unitarily equivalent to X. X1 is a perfectly good
position operator and we continue to use it because the form of Ua(t) is particularly simple.

The operators Xn are readily exponentiated; as shown in Ref. [2], the unitary operator
implementing the acceleration transformation a(t) is then

(Ua(t)ϕ)(p) = e
i(a(t)p/�)ϕ(p+mȧ(t)) . (14)

This can be generalized to the full E(3) group to give

(U�a(t)ϕ)(�p,ms) = ei(�a(t)·�p/�)ϕ(�p+m�̇a(t)),

(UR(t)ϕ)(�p,ms) =
∑
m′

s

Ds
msm′

s
(R(t))ϕ(R−1(t)�p,m′

s),
(15)

which are the unitary operators implementing acceleration transformations on Hm,s.
These operators form a unitary projective representation of E(3) with multiplier

ω(a1, a2) =
m

�
�̇a1(t) · �a2(t) .
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The unitary operators, Eq. (15), can be used to derive the form of fictitious potentials
that arise in noninertial reference frames. Let g(t) denote either �a(t) or R(t) in E(3) and
let ψ′ = Ug(t)ψ be the wave function in the noninertial frame obtained from the wave
function ψ in the inertial frame under the transformation g(t). Applying Ug(t) to the
time-dependent Schrödinger equation valid in an inertial frame gives

i�Ug(t)
∂ψt

∂t
= Ug(t)Hψt,

i�

[
∂

∂t
(Ug(t)ψt)−

∂Ug(t)

∂t
ψt

]
= Ug(t)HU

−1
g(t)Ug(t)ψt,

i�
∂

∂t
ψ′

t =
[
H ′ + i�

∂Ug(t)

∂t
U−1

g(t)

]
ψ′

t;

(16)

here H ′ := Ug(t)HU
−1
g(t) is the transformed Hamiltonian in the noninertial reference frame,

and

∂Ug(t)

∂t
:= lim

ε→0

Ug(t+ε) − Ug(t)

ε
. (17)

Since Ug(t) is known explicitly, the quantum fictitious potential can be computed; the
result is that

i�
∂U�a(t)

∂t
U−1

�a(t) = m�̈a(t) · �X − �̇a(t)�P +m�a(t) · �̈a(t)I,

i�
∂UR(t)

∂t
U−1

R(t)

∣∣∣
ms,m′

s

= −��ω(t) · [�Lδmsm′
s
+ �Ss

msm′
s
];

(18)

the angular velocity �ω(t) is obtained from the angular momentum matrix Ω(t) := Ṙ(t)
R−1(t), which is antisymmetric,

ωi(t) =
1
2
εijkΩjk(t) . (19)

�Ss
msm′

s
are the angular momentum matrices for spin s,

�Ss
msm′

s
:= 〈sms| �J |sm′

s〉 . (20)

If the Hamiltonian is the free particle Hamiltonian, H0 = �P 2/2m, then under linear
accelerations,

U�a(t)H0U
−1
�a(t) =

1
2m
U�a(t)

�P · �PU−1
�a(t) = H0 + �̇a(t) · �P +

m

2
�̇a(t)I,

Haccel := U�a(t)H0U
−1
�a(t) + i�

∂U�a(t)

∂t
U−1

�a(t)

= H0 +m
[
�̈a(t) · �X + �̇a(t)·�̇a(t)

2 I + �a(t) · �̈a(t)I
]

(21)

and the fictitious potential is proportional to m, as expected.
If it were not known how to couple an external gravitational field to a quantum me-

chanical particle, the nonrelativistic version of the principle of equivalence could be used to
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link a constant acceleration with a constant gravitational field. That is, for �a(t) = 1/2�at2,
�a constant, the fictitious potential (in a position representation and neglecting the terms
related to I) is

Vfic(�x ) = m�a · �x (22)

which is the potential for a constant gravitational field.
This reasoning can be turned around. Say, we are given a potential (for simplicity in one

dimension) of the form Vt = f(t)X, a potential linear in X, but varying arbitrarily in time.
An example is a spatially constant external electric field that varies in an arbitrary manner
in time. The time-dependent Schrödinger equation for such a system in a momentum
representation is

i�
∂ϕt

∂t
=

(
p2

2m
+ f(t)i�

∂

∂p

)
ϕt. (23)

If this equation is transformed to a noninertial reference frame, the acceleration a(t) can
be chosen so as to cancel off the effect of f(t). That is, if mä(t) + f(t) = 0, the ∂/∂p
terms cancel and the Schrod̈inger equation becomes

i�
∂ϕ′

t

∂t
=

(
p2

2m
+
mȧ2

2

)
ϕ′

t,

which can readily be solved. Transforming back to the inertial frame gives the solution

ϕt(p) = U−1
a(t)ϕ

′
t(p) = ϕt=0(p−mȧ(t))

× exp
{
− i

�

[
p2

2m
t+ (a(t)− tȧ(t))p+ m

2

(
tȧ2(t) +

∫ t

(ȧ2 − 2a(t)ä(t))
)]}

,
(24)

with ϕt=0(p) ∈ L2(R) the wave function at t = 0.
To conclude this paper, we briefly discuss the question of how to generalize these non-

relativistic results to relativistic quantum mechanics. Relativistic means that the Galilei
group is replaced by the Poincaré group, consisting of Lorentz transformations and space-
time translations. The first problem that arises is that there are a number of different
ways of formulating relativistic quantum mechanics, the most prominent being quantum
field theory. These different formulations all carry representations of the Poincaré group
in one way or another, but they differ in how interactions are introduced. One way in
which interactions can be introduced is through the Poincaré generators. In such a for-
mulation, some generators contain interactions, others not. Dirac [3] classified three such
possibilities as instant, front, and point forms. The instant form is the most familiar form,
in that the Poincaré generators not containing interactions are the Euclidean subalgebra
of rotations and spatial translation generators. More recently, the front form of relativistic
quantum mechanics has been of great interest [4].

However, to analyze accelerations in relativistic quantum mechanics, the point form [5],
wherein all interactions are put into four-momentum generators, is the natural form to
use, for it is the only form which is manifestly covariant under Lorentz transformations
(the generators of Lorentz transformations do not contain interactions).
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In the point form of relativistic quantum mechanics, the interacting four-momentum
operators must satisfy the (Poincaré) conditions

[Pµ, P ν ] = 0,

UΛP
µU−1

Λ = (Λ−1)µνP
ν ,

(25)

where UΛ is the unitary operator representing the Lorentz transformation Λ on an appro-
priate Hilbert space H (which may be a Fock space or a subspace of a Fock space). Since
the four-momentum operators all commute with one another, they can be simultaneously
diagonalized, and used to construct the invariant mass operator,

M :=
√
PµPµ . (26)

The spectrum of M must be bounded from below; the discrete part of the spectrum of M
corresponds to bound states and the continuous part to scattering states.

However, the most important feature of the point form is that the time-dependent
Schrödinger equation naturally generalizes to

i�
∂ψx

∂xµ
= Pµψx, (27)

where x is the space-time point (ct, �x ). This relativistic Schrödinger equation simply
states that the interacting four-momentum operators act as generators of space-time trans-
lations, in a Lorentz covariant manner. But its importance with regard to acceleration
transformations is that relativistic fictitious forces will arise in exactly the same way as
the nonrelativistic ones arose in Eq. (16).

This leads to a second problem, namely finding the generalization of E(3) for relativistic
acceleration. Since, in relativistic mechanics space and time are on an equal footing, time
cannot be an independent parameter, as was the case for E(3). But since the principle
of equivalence links acceleration to general relativity [6], the natural group to consider is
the diffeomorphism group on the Minkowski space, the group of invertible differentiable
maps from the Minkowski manifold to itself, Diff(M). This group has both E(3) and the
Poincaré group as subgroups.

If the transformation

xµ → x′µ = fµ(xν) (28)

is an element of Diff(M), then what is needed is a unitary representation of Diff(M) on
H,

f ∈ Diff(M) → Uf on H, (29)

such that in the limit as c→ ∞, the representation of Diff(M) contracts to a representa-
tion of E(3). For such Uf , the relativistic fictitious force is given by

i�
∂Uf

∂xµ
U−1

f , (30)

and, from the principle of equivalence, shows how to couple an external gravitational field
to a relativistic particle of arbitrary mass and spin. Details of these ideas will be carried
out in a future paper.
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