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Abstract

The ansatzes which reduce the Euler-Lagrange-Born-Infeld equation to differential
equations with a smaller number of independent variables are constructed using the
subgroup structure of the Poincaré group P(1,3). The corresponding symmetry re-
duction is made. Some classes of exact solutions of the investigated equation are
found.

In [1, 2], the symmetry properties of the Euler-Lagrange-Born-Infeld equation were studied
and multiparametric families of exact solutions of the equation have been found using
special ansatzes.

Consider the equation

Du (1 — wyu”) + uyu*u” =0, (1)

d*u

where u = u(x), = (xo, x1,22) € R3, up = 92,02, Uy, = %, w,v =0,1,2, 0 is the
d’Alembertian.

The symmetry group [1, 2] of equation (1) includes the Poincaré group P(1,3) as a
subgroup. We construct ansatzes which reduce equation (1) to differential equations with
a smaller number of independent variables, using the invariants [3, 4] of the subgroups
of the group P(1,3). The corresponding symmetry reduction is performed. Using the
solutions of the reduced equations, we have found some classes of exact solutions of the
Euler-Lagrange-Born-Infeld equation.

1. Below we write ansatzes which reduce equation (1) to ordinary differential equations
(ODEs), and we list the ODEs obtained as well as some exact solutions of the Euler-
Lagrange-Born-Infeld equation.

Lou=pw), w=@F+z))"?, wp'+eP+e =0;

u=cln <(m%—|—x%)2+q/m%+x% —c2>;

2 u= —plw) a0, w— (2t a3, =05 u— - s

3.0 ul=—p?(w)+2d, w=x1, o—P?+1=0;

u? = —C% sin?(ciz1 +co) +23;  w?=—(ewy + )2 +ad, =41
1
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4. u=—pw)+z, w=(23—123— u2)1/2,
u)902()0// o 2w2¢/3 4 4wg0<p’2 o 90290/ — 0;

u= 2Lc <1 —i—s\/l —4de(zg — c(xd — x%))) o ou=x— c(xd -z} — u)V4

5. ul=—p?(w)+28, w=(2?+ x%)l/Q,

we'p — %0 —wp? + o +w = 0;
2
u? = z3 - (8(:5% + 23)1/? —i—c) , €==l;
6. u?=—p?(w)+ad—2% 23, w=uz0—u,

W280//90+W280/2*6W80Q0/+3902 :0’

u? = 222 —2i—c2(zo—u)% u= % (C+8\/02—4(C$0—$%+$%+$%)) ,
e ==+1;

T u=pWw), w=(g-2f-a3)%  wp’—20% +2¢ = 0;
u=ce(xd -2} —a3) 2 +e¢, &=+l

8. w=¢*w)—a2?—23, w=mx0 ¢p+20?%-2=0;

u? = (ewg +¢)? — 22 — 23, &= +£1;
9. u=p(w)— aarctan ﬁ—f, w= (27 + 55%)1/27

(a2—{—1)w3gp”—|—w2<p’3—l—(2a2+w2)gp’:0;

L2

10. u=—p(w)+ o +arctan 32, w= (3 + 2312, W3 + w420 = 0.

Ansatzes (1)—(10) can be written in the following form:

h(u) = f(2) - p(w) + g(x),

where h(u), f(z), g(x) are given functions, ¢(w) is an unknown function, w = w(x) is a
one-dimensional invariant of the subgroups of the group P(1,3).

11, wrd — (1 —w) (270 + w)w + 23) = p(w), w=1u— zy,
W2 (1 —w)2p" — dw(l — w)(1 — 2w)¢" + 2(Tw? — Tw + 2)p = 0;
(u = w0)33 + (w0 — u+ 1)(aF — 23 — u2) = & (u — 20)x
(6(u — 20)® — 21(u — 20)? + 25(u — x0) + 10) + c2(u — z0)(u — 29 — 1).

Ansatz (11) can be written in the following form:

hw,z) = f(z) - p(w) + g(2),

where h(w,x), f(x), g(z) are given functions, ¢(w) is an unknown function, w = w(z) is a
one-dimensional invariant of the subgroups of the group P(1,3).

12. aln(mo — u) = <p(a)) - T, W= (953 - “2)1/27



On Reduction and Some Exact Solutions of the Euler-Lagrange-Born-Infeld 247

w(a? +w?)" — WP + a2 + Q)wp”? + (W — a?)y’ = 0;

13. aln(zg —u) = p(w) — 21, w=x2, ¢"=0;
u=u1xy—exp((c1xa —x1 + c2)/a);

14. zo4+u—xi(xg —u) + %(mo — u)3 =p(w), w= lef(mo — u)2 — 1,
2wp" — ¢ = 0;

3/2
xo +u—x1(x0 —u) + %(5'30 —u)® = % (21[(560 —u)? — xl) + co;

15. (20 —u)? =4do(w) +4x1, w=mz9, ¢’ =0;
u=x+2e\/x1 + 129+ 3, &= =%I;

16. aln(xg —u) = p(w) — 2, w= (23 —23 - u2)1/2,
w(a? + w?)p" — 202" + bawp”? + (2w? — a?)¢’ = 0.

Ansatzes (12)—(16) can be written in the following form:

h(u, ) = f(z) - p(w) + g(2),

where h(u,z), f(z), g(z) are given functions, ¢(w) is an unknown function, w = w(x) is a
one-dimensional invariant of the subgroups of the group P(1,3).

2. Next we consider the reduction of the investigated equation to two-dimensional partial
differential equations (PDEs). The PDEs obtained can be written in the form:
A (01103 + P23 — 201201902) + Bip11 + Bawas + 2Bsp12 + V =0,

) 0

. = P 1 >
902 — awia SOZ] — 8w18w]7 1= 172

Below, we present the ansatzes, which reduce equation (1) to two-dimensional PDEs,
and the corresponding coefficients A, By, Bs, Bs, V of the reduced equation.

I u=p(w,w), wi=x1, wy=u;
A=B =By=1, By=V =0.

2. u=—p(w,ws) +x0, wi1=x1, wy=T;
A=1, Bi=By=By=V =0.

3. u=¢p(wi,ws), wi=wp, wg:(as%+x%)l/2;
A=Bi=-By=wy, B3=0, V=02(pf—¢3-1).

4. u? = —p*(wi,w2) + 78, w1 =11, wy=To;
A=-Bi=-By=¢ By=0, V=¢" (o] +¢p5-1).

5. u? = —p*(wi,w2) + 23 — 23, wi=1x0—u, wy=m3;
A=0, Bi=wip, By=¢*(p—2wip1), Bs=uwip’ps,
V = w1 (wipr — 4p) —2¢° (93 — 1)



248

O. Leibov

6. u=p(wy,wy), w =aarctan 2 2+, wy= (z% + 502)1/2

A= B =w; (w3 —a?), Bgz—wg, B3 =0,

V =wips (9] — 3 — 1) — 2a%pips.

T2
17

A:wg’, B1:—B2:w2(u}2—|—a2), B3 =0,

2 2)1/2.

7. u= p(wr,wz) — aarctan 3 wi =0, w2 = (7] + 73 i

V =wips (o] — 93 — 1) — 2a%ps.

8. u?=—}(wi,wo) + 33— 22, wi=x0—u, wr=1z1—T2(T0—U);
A=0, Bi=wip, Bo=p s+ ¢ wi+1)(p—2w1¢1)),
B3 = wip (w2 + (wi + 1) pa200)

V = (w11 + wap2)® — 0203 — 4 (w11 + wapa) + 202

1/2
9. aln(xg+u) = p(wy,ws) — arctan x?’ w1 = (23 + 23) 2= (22 — u?)
A=wiws, By =-wiws (w2 +2aps), Bs=uwiws (c’w} +wj),

By = awjwipr, V =wiws (o] — ¢3) (Wi — wapr) + Bowiwapl—
—2awiwdp1ps + w1 (W3 — a?w?) g — 2wW3 k1.

10. (2% + x2)1/2 =p(wi,w2), wi=x0+u, wy= arctan + o — u;

A=4¢3 By =0, By=—¢, Bz=2p3 Vchp%—cp (4p1pp — 1).

11. aln(zg — u) = p(wi,w2) — 1, w1 = (x(% — u2)1/2, Wo = T9;
A= w%, Bi =w (oz2 + w%) , By = —2aw%<p1, B3 = aw%cpg,

V = —wipr (¢f = ¢3) + Bawie] + (wf — o?) o1,
12. u+ xo — z1(x0 — u) + %(xo —u)? = p(w,ws), w = lef(xo —u)? — 2,

AZl, BlzBQZ—4wl, B3:0, V:2(p1.
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