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Abstract

Using the nonsplitting subgroups of the generalized Poincaré group P (1, 4), ansatzes
which reduce the eikonal equation to differential equations with a lesser number of
independent variables are constructed. The corresponding symmetry reduction is
made. Some classes of exact solutions of the investigated equation are presented.

The relativistic eikonal (the relativistic Hamilton-Jacobi) equation is fundamental in the-
oretical and mathematical physics. We consider the equation
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In [1], it was shown that the maximal local (in the sense of Lie) invariance group of
equation (1) is the conformal group C(1, 4) of the five-dimensional Poincaré-Minkowski
space. Using special ansatzes, the multiparametric families of exact solutions of the eikonal
equation were constructed [1–4].
The conformal group C(1, 4) contains the generalized Poincaré group P (1, 4) as a sub-

group. The group P (1, 4) is the group of rotations and translations of the five-dimensional
Poincaré–Minkowski space. For the investigation of equation (1), we have used the non-
splitting subgroups [5–7] of the group P (1, 4). We have constructed ansatzes which reduce
equation (1) to differential equations with a smaller number of independent variables using
invariants [8] of the nonsplitting subgroups of the group P (1, 4). The corresponding sym-
metry reduction is performed. Using solutions of the reduced equations, we have found
some classes of exact solutions of the eikonal equation.
Below we write ansatzes which reduce equation (1) to ordinary differential equations

(ODEs), and we list the ODEs obtained as well as some solutions of the eikonal equation.
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Ansatzes (1)–(10) can be written in the following form:

h(u) = f(x) · ϕ(ω) + g(x), (2)
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where h(u), f(x), g(x) are given functions, ϕ(ω) is an unknown function. ω = ω(x) is a
one-dimensional invariant of the nonsplitting subgroups of the group P (1, 4).

11. arcsin x3
ω = ϕ(ω)− x0

α , ω = (x2
3 + u2)1/2,

(ϕ′)2 + 1
ω2 − 1

α2 = 0;

12. arcsin x3
ω = ϕ(ω)− c

αx0, ω = (x2
3 + u2)1/2 (0 < c < 1, α > 0),

(ϕ′)2 + 1
ω2 − c2

α2 = 0;

13. archx0
ω = ϕ(ω)− c

αx3, ω = (x2
0 − u2)1/2 (α > 0),

(ϕ′)2 −
(
1
ω2 +

c2

α2

)
= 0;

c
αx3 + arch x0√

x2
0 − u2

= (x2
0 − u2)1/2

(
c2

α2 +
1

x2
0 − u2

)1/2

−

− ln
[

1
(x2

0 − u2)1/2 +
(

c2

α2 +
1

x2
0 − u2

)1/2
]

, (c > 0);

14. ε
3 (2(ω − x3))

3/2 + εx3 (2(ω − x3))
1/2 = ϕ(ω)− x0,

ω = x3 +
(x0 + u)2

2 ,

(ϕ′)2 − 2ω − 1 = 0;

15. x0 + x3
α (x0 + u) + (x0 + u)3

3α2 = ϕ(ω), ω = αx3 +
(x0 + u)2

2 ,

(ϕ′)2 − 1
α2 − 2ω

α4 = 0;

x0 + x0 + u
α x3 +

(x0 + u)3

3α2 = 2
√
2

3α2

[
αx3 +

(x0 + u)2
2 + α2

2

]3/2

;

16. (x0 + u)3
3 + εx3(x0 + u) + 1

2(x0 − u) = ϕ(ω),

ω = (x0 + u)2
2 + εx3 (ε = ±1), (ϕ′)2 − 2ω = 0;

(x0 + u)3
3 + εx3(x0 + u) + 1

2(x0 − u) = 2
√
2
3

[
(x0 + u)2

2 + εx3

]3/2

+ c.

Ansatzes (11)–(16) can be written in the following form:

h(ω, x) = f(x) · ϕ(ω) + g(x), (3)

where h(ω, x), f(x), g(x) are given functions, ϕ(ω) is an unknown function, ω = ω(x) is
a one-dimensional invariant of the nonsplitting subgroups of the group P (1, 4).
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