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Abstract
New exact solutions of the Euler equations describing flows of an ideal homogeneous
incompressible fluid are obtained by means of a modification of the ”ansatz” method.

In recent years, several new methods for finding exact solutions of the partial differential
equations have been developed. Often these methods are generalizations of older ones
and are reduced to either appending additional differential equations (the method of
differential constraints, side conditions, conditional symmetry, and so on) or to assuming
a general form for the solution (the ”ansatz” method called often the direct method, and
the generalization of the usual ”separation of variables” technique). Both approaches are
closely connected with each other.

In our paper [1], the Euler equations (the EEs)

�ut + (�u · ∇)�u+∇p = �0, div �u = 0 (1)

which describe flows of an ideal homogeneous incompressible fluid were considered with
the following additional condition:

u1
1 = u3 = 0. (2)

All the solutions of system (1)–(2) were found. They can be interpreted as a particular case
of translation flows. In this paper, we construct more general classes of exact solutions
for EEs (1) by means of a modification of the ”ansatz” method.

Let us transform the variables in (1):

�u = O(t)�w(τ, �y) −O(t)OT
t (t)�x, p = q(τ, �y) +

1
2
|OT

t (t)�x|2,
τ = t, �y = OT (t)�x,

(3)

where O = O(t) is an orthogonal matrix function depending on t, i.e., transformation
(3) defines time-depending space rotation. It can be noted that the non-Lie invariance
of hydrodynamics equations under transformations of the type (3) was investigated, for
instance, in [2, 3]. As a result of transformation (3), we obtain equations in new unknown
functions �w and q and new independent variables τ and �y:

�wτ + (�w · ∇)�w +∇q − 2�γ × �w − �γt × �y = �0, (4)

div �w = 0, (5)

where the vector function �γ = �γ(t) is defined by means of the formula

�γ × �z = OT
t O�z ∀z, t.
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(The matrix OT
t O being antisymmetric, the vector �γ exists.)

In fact, instead of equation (4), we investigate its differential consequence

(rot �w)τ + (�w · ∇)rot �w − (rot �w · ∇)�w + 2(�γ · ∇)�w − 2�γτ = �0. (6)

Equation (4) will be used only to find the expression for p. To simplify solutions of (4)–(5),
we make transformations generated by a Lie symmetry operator of the form

R̃(�n) = na∂ya + na
τ∂wa − (�nττ − 2γ × �nτ − �γτ × �n) · �y ∂q, (7)

where �n is an arbitrary smooth vector function of τ . The vector function �w is to be found
in the form

w1 = v1(τ, y2, y3) + α1(τ)y1,

w2 = v2(τ, y1, y3) + α2(τ)y2,

w3 = βi(τ)yi + α3(τ)y3,

(8)

where v1
22v

2
11 �= 0, i.e., it is to satisfy the additional conditions

w1
1a = w2

2a = w3
ab = 0, w1

22w
2
11 �= 0.

Note that the functions vi depend on the different ”similarity” variables.
Here and below, we sum over repeated indices. Subscript of a function denotes diffe-

rentiation with respect to the corresponding variables. The indices a, b take values in
{1, 2, 3} and the indices i, j in {1, 2}.

It follows from (5) that α3 = −(α1 + α2). Substituting (8) into (6), we obtain the
equations to find the functions vi, βi, αi and γa:

β2
τ − v2

3τ − v2
31(v

1 + α1y1) − (βiyi − (α1 + α2)y3)v2
33 − (β2 − v2

3)α
1 + β1v1

2−
v2
1v

1
3 + 2γ1α1 + 2γ2v1

2 + 2γ3v1
3 − 2γ1

t = 0,

v1
3τ − β1

τ + (v2 + α2y2)v1
32 + (βiyi − (α1 + α2)y3)v1

33 − β2v2
1 − (v1

3 − β1)α2+

v1
2v

2
3 + 2γ1v2

1 + 2γ2α2 + 2γ3v2
3 − 2γ2

t = 0,

v2
1τ − v1

2τ + (v1 + α1y1)v2
11 − (v2 + α2y2)v1

22 + v2
3β

1 − v1
3β

2+

(v2
1 − v1

2)(α
1 + α2) + (βiyi − (α1 + α2)y3)(v2

13 − v1
23)+

2γ1β1 + 2γ2β2 − 2γ3(α1 + α2) − 2γ3
t = 0.

(9)

Unlike the ”ansatz” method, we do not demand realizing the reduction conditions in
system (9). The differential consequences of system (9) are the equations

v1
22v

2
1111 = v2

11v
1
2222,

i.e.,

v1
2222

v1
22

=
v2
1111

v2
11

:= h = h(t, x3), (10)

and

(v1
22v

2
11)3 = 0. (11)
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Consider the particular cases.

Case I. h > 0. Let k := h1/2. Then equation (10) gives that

v1 = f1eky2 + f2e−ky2 + f3y2 + f4,

v2 = g1eky1 + g2e−ky1 + g3y1 + g4,
(12)

where fm = fm(τ, y3), gm = gm(τ, y3), m = 1, 4, f if i �= 0, gigi �= 0. It follows from (11)
that

k3 = 0, (f igj)3 = 0.

Therefore, there exist the functions µi = µi(τ), νi = νi(τ), f = f(τ, y3), and g = g(τ, y3)
such that

f i = µif, gi = νig.

Substituting expression (12) for vi into system (9) and using a linear independence of the
functions

yie
k(±y2±y1), ek(±y1±y2), y2

i , y1y2, yi, and 1,

we obtain the complicated system for the rest of functions:

νi(β2g3 − (−1)if3g) = 0, µi(β1f3 − (−1)ikg3f) = 0,

νi((kτ + α1k)g − (−1)iβ1g3) = 0, µi((kτ + α2k)f − (−1)iβ2f3) = 0,

νi(β2g33 + (β2 − 2γ1)k2g + (−1)iγ3kg3) = 0,

µi(β1f33 + (β1 + 2γ2)k2f − (−1)iγ3kf3) = 0,

νi
τg + νi(gτ − (−1)ikf4g − (α1 + α2)y3g3 + α2g) = 0,

µi
τf + µi(fτ − (−1)ikg4f − (α1 + α2)y3f3 + α1f) = 0,

−(f3g3)3 − β2g4
33 + 2γ3f3

3 = 0, (f3g3)3 + β1f4
33 + 2γ3g3

3 = 0,

f3
3τ − (α1 + α2)y3f

3
33 + β2f4

33 = 0, g3
3τ − (α1 + α2)y3g

3
33 + β1g4

33 = 0,

β1(f3
3 − 2g3

3) = 0, β2(2f3
3 − g3

3) = 0, βif3
33 = βig3

33 = 0,

β2
τ − g4

3τ − (f4g3)3 + (α1 + α2)y3g
4
33 + α1g4

3 + (β1 + 2γ2)f3+

2γ3f4
3 − 2γ1

τ − α1(β2 − 2γ1) = 0,

f4
3τ − β1

τ + (g4f3)3 − (α1 + α2)y3f
4
33 − α1f4

3 − (β2 − 2γ2)g3+

2γ3g4
3 + α2(β1 + 2γ2) − 2γ2

t = 0,

g3
τ − f3

τ − (α1 + α2)y3(g3
3 − f3

3 ) + β1g4
3 − β2f4

3 + (α1 + α2)(g3 − f3)+

2γiβi − 2γ3(α1 + α2)− 2γ3
t = 0.

(13)

Here we do not sum over the index i.
We integrate system (13), substitute the obtained expressions for the functions fm,

gm, m = 1, 4, k, αi, βi, and γa into (12) and (8). Then, integrating equation (4) to find
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the function q, we get solutions of (4)–(5) that are simplified by means of transformations
generated by operators of the form (8)

Depending on different means of integrating system (13), the following solutions of
(4)–(5) can be obtained in such a way:

1. (ν1ν2)2 + (µ1µ2)2 �= 0, �γ �= �0 :

w1 = C11ke
ky2 + C12ke

−ky2 − kτk
−1y1,

w2 = C21ke
ky1 + C22ke

−ky1 − kτk
−1y2,

w3 = −2γ2y1 + 2γ1y2 + 2kτk
−1y3,

q = −k2(C11e
ky2 − C12e

−ky2 + 2γ3k−2)(C21e
ky1 − C22e

−ky1 − 2γ3k−2)+
1
2kττk

−1(y2
1 + y2

2 − 2y2
3) − (kτk

−1)2|�y|2 − 2(γ1y2 − γ2y1)2+

(γ2
τ + 4γ2kτk

−1)y1y3 − (γ1
τ + 4γ1kτk

−1)y2y3.

2. (ν1ν2)2 + (µ1µ2)2 �= 0, �γ = �0. Then the matrix O can be considered to be equal to the
unit matrix, and �w = �u, q = p, �y = �x, τ = t.

u1 = keζ(ω)(C11e
kx2 + C12e

−kx2) − ktk
−1x1,

u2 = ke−ζ(ω)(C21e
kx1 + C22e

−kx1) − ktk
−1x2,

u3 = 2ktk
−1x3,

p = −k2(C11e
kx2 − C12e

−kx2)(C21e
kx1 − C22e

−kx1)+
1
2kttk

−1(x2
1 + x2

2 − 2x2
3) − (ktk

−1)2|�x|2,

where ω = k−2(t)x3, k is an arbitrary function of t which does not vanish, ζ is an arbitrary
function of ω.

3. µ1µ2 = ν1ν2 = 0, βi = γ3 = 0. Then γi = 0 and, as above, we can assume that �w = �u,
q = p, �y = �x, τ = t.

u1 = C1k exp{(−1)ikx2 +H(τ, ω)} + (−1)ikF (ω) − ktk
−1x1,

u2 = C2k exp{(−1)jkx1 −H(τ, ω)} − (−1)jkF (ω) − ktk
−1x2,

u3 = 2ktk
−1x3,

p = −C1C2(−1)i+jk2e(−1)ikx2+(−1)jkx1 + 1
2kttk

−1(x2
1 + x2

2 − 2x2
3) − (ktk

−1)2|�x|2,

where ω = k−2(τ)x3, k is an arbitrary function of t which does not vanish.

H = (−1)i+jF (ω)
∫
k2(t)dt+G(ω).

F and G are arbitrary functions of ω, i and j assumed to be fixed from {1; 2}.

4. µ1µ2 = ν1ν2 = 0, βiβi + (γ3)2 �= 0. The solution obtained in this case is very compli-
cated, and we omit it.
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Case 2. h < 0. Let k := (−h)1/2. Then equation (10) gives that

v1 = f1 cos(ky1) + f2 sin(ky1) + f3y1 + f4,

v2 = g1 cos(ky2) + g2 sin(ky2) + g3y2 + g4,

where fm = fm(τ, y3), gm = gm(τ, y3), m = 1, 4, f if i �= 0, gigi �= 0. In a way being
analogous to Case 1, we obtain the following solutions of equations (4)–(5):

1. �γ �= �0 :

w1 = C11k cos(ky2) + C12k sin(ky2)− kτk
−1y1,

w2 = C21k cos(ky1) + C22k sin(ky1)− kτk
−1y2,

w3 = −2γ2y1 + 2γ1y2 + 2kτk
−1y3,

q = k2(C11 sin(ky2)−C12 cos(ky2)−2γ3k−2)(C21 sin(ky1)−C22 cos(ky1)+2γ3k−2)+
1
2kττk

−1(y2
1 + y2

2 − 2y2
3) − (kτk

−1)2|�y|2 − 2(γ1y2 − γ2y1)2+

(γ2
τ + 4γ2kτk

−1)y1y3 − (γ1
τ + 4γ1kτk

−1)y2y3,

where �γ is an arbitrary vector function of τ, k = C|γ3| 12 if γ3 �= 0 and k is an arbitrary
function of τ if γ3 = 0.

2. �γ = �0. As above, we can consider that �w = �u, q = p, �y = �x, τ = t.

u1 = keζ(ω)(C11 cos(kx2) + C12 sin(kx2))− ktk
−1x1,

u2 = ke−ζ(ω)(C21 cos(kx1) + C22 sin(kx1))− ktk
−1x2,

u3 = 2ktk
−1x3,

p = k2(C11 sin(kx2) − C12 cos(kx2))(C21 sin(kx1) − C22 cos(kx1))+
1
2kttk

−1(x2
1 + x2

2 − 2x2
3) − (ktk

−1)2|�x|2,
where ω = k−2(t)x3, ζ = ζ(ω) and k = k(τ) are arbitrary functions of their arguments,
k �= 0.

Case h = 0 is impossible.
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