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Abstract

Exact solulions of the Lorentz-Dirac-Maxwell equations are constructed.

Motion of a classical spinless particle moving in electromagnetic field is described by the
system of ordinary differential equations (Lorentz-Dirac) and partial differential equations
(Maxwell) [1]:

mu̇µ = eFµνu
ν +

2
3
e2 (üµ + uµu̇ν u̇

ν) , (1)

where Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
is the tensor of electromagnetic field

∂Fµν

∂xν
= 0,

εµνρσF ρσ

∂xν
= 0, (2)

uµ ≡ ẋµ =
dxµ

dτ
, uµuµ = 1. (3)

Some exact solutions of system (1), (2) can be found in [2].
In the present paper, we have obtained new classes of exact solutions of the Lorentz-

Dirac-Maxwell system using P (1, 3) symmetry properties of (1), (2).
1. Let us show that if system (1) is invariant with respect to the algebra

〈 ∂

∂x0
,

∂

∂x3
, x1

∂

∂x2
− x2

∂

∂x1
〉, (4)

then its particular solutions can be looked for in the form

x1 = aτ, x1 = R cos dτ, x2 = R sin dτ, x3 = bτ, (5)

where a, b, d, R are constants.
Indeed, equation (1) admits algebra (4) if and only if

∂ �E

∂x0
=

∂ �H

∂x0
=

∂ �E

∂x3
=

∂ �H

∂x3
= 0,

∂Ea

∂x2
x1 − ∂Ea

∂x1
x2 = δa2E1 − δa1E2,

∂Ha

∂x2
x1 − ∂Ha

∂x1
x2 = δa2H1 − δa1H2.

(6)
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The general solutions of equations (6) read:

H1 = f1x1 + f2x2, H2 = f1x2 − f2x1, H3 = f5,

E1 = f3x1 + f4x2, E2 = f3x2 − f4x1, E3 = f6,
(7)

where fi = fi(x2
1 + x2

2).
Substituting (7) into (2), we find functions fi

fi =
λi

x2
1 + x2

2

, i = 1, 4, fi = λi, i = 5, 6. (8)

Substituting expessions (5) into (1), where Fµν is given by (7), (8), we obtain the
additional condition for the constants a, b, d, R, λi:

a2 − b2 − R2d2 = 1,

aR2d4 +
3
2e

{λ6b − λ4d} = 0,

R2d3 = −R4d5 +
3
2e

{aλ4 − bλ1},
m

e
R2d2 + aλ3 + bλ2 + R2dλ5 = 0.

(9)

2. To construct another class of exact solutions of equations (1), (2), we require the
invariance of (1) with respect to the algebra

〈 ∂

∂x1
,

∂

∂x1
, x1

∂

∂x2
− x2

∂

∂x1
+ α

∂

∂x0
〉, α �= 0. (10)

In this case, solutions (1) can be looked for in the form:

x0 = aτ, x1 = R cos
aτ

α
, x2 = R sin

aτ

α
, x3 = 0, (11)

where a, R, α are constants.
Indeed, a requirement of the invariance of (1) with respect to algebra (10) yields the

following form of the functions Ei, Hi:

E1 = f1 cos
x0

α
+ f2 sin

x0

α
, E2 = f2 sin

x0

α
− f1 cos

x0

α
, E3 = f6,

H1 = f3 cos
x0

α
+ f4 sin

x0

α
, H2 = f3 sin

x0

α
− f4 cos

x0

α
, H3 = f5,

(12)

where fi = fi(x3).
The electromagnetic field {Ei, Hi} (12) satisfies the Maxwell equations if the functions

fi are of the form

f1 = λ1 cos
x3

α
+ λ2 sin

x3

α
, f2 = λ3 cos

x3

α
+ λ4 sin

x3

α
,

f3 = −λ1 sin
x3

α
+ λ2 cos

x3

α
, f4 = −λ3 sin

x3

α
+ λ4 cos

x3

α
,

f5 = λ5, f6 = λ6,

(13)

where λi = const.
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After substituting expressions (11) into (2), where Ei, Hi are determined from (12),
(13), we obtain the following expressions for constants:

a2

(
1 − R2

α2

)
= 1, λ5 − R

α
λ3, m

a

α2
R = eλ1,

R

(
a

α

)3

+
(

a

α

)5

R5 +
3
2e

aλ2 = 0.

(14)

Thus, exact solutions of (1), (2) are given by formulae (11)–(14).
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