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Abstract
Exact solulions of the Lorentz-Dirac-Maxwell equations are constructed.
Motion of a classical spinless particle moving in electromagnetic field is described by the

system of ordinary differential equations (Lorentz-Dirac) and partial differential equations
(Maxwell) [1]:

miy, = eFu” + %eQ (i + gt i) (1)
where F),, = % — % is the tensor of electromagnetic field
Uy =y = C?—T“, uyut = 1. (3)

Some exact solutions of system (1), (2) can be found in [2].
In the present paper, we have obtained new classes of exact solutions of the Lorentz-
Dirac-Maxwell system using P(1,3) symmetry properties of (1), (2).
1. Let us show that if system (1) is invariant with respect to the algebra
o 0 0 0
By 0wy oy~ 0w

then its particular solutions can be looked for in the form

(4)

T1 = ar, 1 = Rcosdr, To = Rsindr, x3 = br, (5)

where a, b, d, R are constants.
Indeed, equation (1) admits algebra (4) if and only if

OE O0H OE 9oH

duy 0wy w3 Ozs

0, 1 — aanQ = a2 E1 — a1 B2, (6)
Ors or

0H, OH,

a
— ——x9 = 0g2H1 — 001 Ho.
B Ty Dy T2 = 02111 — Oq1412
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The general solutions of equations (6) read:

Hy = fiz1 + foxo, Hy = fizo — foxn, Hs = fs,
Ey = f3x1 + faxa, Ey = f3xe — fax, Es = fe,

where f; = fi(af + a3).
Substituting (7) into (2), we find functions f;

i
x? + 2%’

Substituting expessions (5) into (1), where F),, is given by (7), (8), we obtain the
additional condition for the constants a, b, d, R, A;:

a* —b* — R*d* =1,

aR*d" + 2—36{>\6b — Md} =0,
R*d® = —R'd° + %{m — b1},
%deQ + aX3 + by + R%d)\s = 0.

2. To construct another class of exact solutions of equations (1), (2), we require the
invariance of (1) with respect to the algebra

o 0 0 0 0

— Tl 0. 10
<8x1’ (‘3x1’x1 8$2 8$1 a:L‘()>7 @ 7& ( )
In this case, solutions (1) can be looked for in the form:

To = ar, 21 = Rcos %, o :Rsin%, x3 =0, (11)

where a, R, o are constants.
Indeed, a requirement of the invariance of (1) with respect to algebra (10) yields the
following form of the functions FE;, H;:

xg . X0 . Zo xg

Ey = ficos — + fasin—, Ey = fasin — — ficos —, E3 = fe,
x0 . X0 . X x0

Hy = f3cos — + fysin —, Hy = f3sin — — f4cos —, Hs = fs,
(e} o (e} (e}

where f; = fi(z3).
The electromagnetic field {E;, H;} (12) satisfies the Maxwell equations if the functions
fi are of the form

3 . X3 3 . T3
f1 = A1c08s — + Agsin —, fo = Aszcos — + Agsin —,
o « o «
. T3 3 . T3 3
f3 = —Aysin — + Ag cos —, f1 = —Agsin — + Agcos —, (13)
« « o o

f5 = As, fe = e,

where \; = const.
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After substituting expressions (11) into (2), where E;, H; are determined from (12),
(13), we obtain the following expressions for constants:

a2

3 5
3
R <3> + (g) R’ + —aXy = 0.
« o 2e

2
a? <1 - R—> T V5% m-=R = e,
(6% (6%
(14)

Thus, exact solutions of (1), (2) are given by formulae (11)—(14).
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