
Symmetry in Nonlinear Mathematical Physics 1997, V.1, 206–210.

Representations of Subalgebras of a Subdirect

Sum of the Extended Euclid Algebras and

Invariant Equations

Halyna LAHNO

Pedagogical Institute, Poltava, Ukraine,
E-mail: lahno@pdpi.poltava.ua

Abstract

Representations of subdirect sums of the extended Euclid algebras AẼ(3) and AẼ(1)
in the class of Lie vector fields are constructed. Differential invariants of these algebras
are obtained.

Description of general classes of partial differential equations invariant with respect to a
given group is one of the central problems of the group analysis of differential equations.
As is well known, to get the most general solution of this problem, we have to construct
the complete set of functionally independent differential invariants of some fixed order
for all possible realizations of the local transformation group under study. Fushchych
and Yehorchenko [2–4] found the complete set of first- and second-order differential in-
variants for the standard representations of the groups P (1, n), E(n), G(1, n). Rideau
and Winternitz [5, 6] have obtained new realizations of the Poincaré and Galilei group in
two-dimensional space-time. New (nonlinear) realizations of the Poincaré groups P (1, 2),
P (2, 2) and Euclid group E(3) were found by Yehorchenko [7] and Fushchych, Zhdanov &
Lahno [8, 9, 10].
In this paper, we consider the problem of constructing the complete set of the second-

order differential invariants of subalgebras of a subdirect sum of extended Euclid algebras.
These algebras are invariance algebras of a number of important differential equations (for
example, the Boussinesq equation, equations for the polytropic gas [11]).

1. Let V = X × U ∼= R4 ×R1 be the space of real variables x0, x = (x1, x2, x3) and u, G
be a local transformation group acting in V and having the generators

Q = τ(x0, x, u)∂x0 + ξa(x0, x, u)∂xa + η(x0, x, u)∂u. (1)

By definition the operators 〈Q1, . . . , QN 〉 form the Lie algebra AG and fulfill the commu-
tation relations

[Qa, Qb] = Cc
abQc, a, b, c = 1, . . . , N. (2)

The problem of classification of realizations of the transformation group G is reduced to
classifying realizations of its Lie algebra AG within the class of Lie vector fields.
Introduce the binary relation on the set of realizations of the Lie algebra AG. Two

realizations are called equivalent if there exists a nondegenerate change of variables

x
′
0 = h(x0, x, u), x

′
a = ga(x0, x, u), u

′
= f(x0, x, u), a = 1, 2, 3, (3)
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transforming them one into another. Note that the introduced equivalence relation does
not affect the form of relations (2) [1]. Furthermore, it divides the set of all possible
representations into equivalence classes.
We consider covariant realizations of subalgebras of a subdirect sum of the extended

Euclid algebras AẼ(1) and AẼ(3). Saying about a subdirect sum of these algebras, we
mean two algebras. If L is a direct sum of the algebras AẼ(1) and AẼ(3), then its basis
operators satisfy the following commutation relations:

[P0, Pa] = [P0, Jab] = [Pa, Pb] = 0;

[Pa, Jbc] = δabPc − δacPb;

[Jab, Jcd] = δadJbc + δbcJad − δacJbd − δbdJac;

(4)

[P0, D1] = P0, [Pa, D2] = Pa,

[P0, D2] = [D1, D2] = [Pa, D1] = [Jab, D1] = [Jab, D2] = 0,
(5)

where a, b, c,= 1, 2, 3, δab is Kronecker symbol.
Next, if K is a subdirect sum of the algebras AẼ(1) and AẼ(3) and K is not isomorphic

to L, then its basis is formed by the operators P0, Pa, Jab, D that satisfy the commutation
relations (4), and

[P0, D] = kP0, [Pa, D] = Pa, [Jab, D] = 0, (6)

where a, b = 1, 2, 3, k �= 0, k ∈ R.

Lemma 1. An arbitrary covariant representation of the algebra AE(1) ⊕ AE(3) in the
class of vector fields is reduced by transformations (3) to the following representation:

P0 = ∂x0 , Pa = ∂xa , Jab = xa∂xb
− xb∂xa , a, b = 1, 2, 3. (7)

The proff of Lemma 1 follows from the results of Theorem 1 [8].

Theorem 1. Nonequivalent covariant representations of the Lie algebra L in the class of
vector fields are exhausted by representations (7) of the translation and rotation generators
and one of the following representations of dilatation operators:

D1 = x0∂x0 , D2 = xa∂xa ; (8)

D1 = x0∂x0 , D2 = xa∂xa + 2u∂u; (9)

D1 = x0∂x0 − u∂u, D2 = xa∂xa + ku∂u, k �= 0; (10)

D1 = x0∂x0 − u∂u, D2 = xa∂xa ; (11)

D1 = x0∂x0 + u∂u, D2 = u∂x0 + xa∂xa . (12)

Theorem 2. Nonequivalent covariant representations of the algebra K in the class of
vector fields are exhausted by representations (7) of the translation and rotation generators
and one of the following representations of dilatation operators:

D = kx0∂x0 + xa∂xa , k �= 0, (13)
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D = kx0∂x0 + xa∂xa + u∂u, k �= 0. (14)

To prove these theorems, it is sufficient to complete the representation of the algebra
AE(1)⊕AE(3) obtained in Lemma 1 by dilatation operators of the form (1) and to verify
that the commutation relations (5) or (6) are true.

2. Consider the problem of description of second-order partial differential equations of
the most general form

F

(
x, u, u

1
, u

2

)
= 0, (15)

invariant with respect to the obtained realizations of the algebras L and K in the class of
the first-order differential operators.
As is known [1], this problem can be reduced to obtaining the differential invariants of

the given algebras, i.e., solving the following first-order partial differential equations:

Xi
2
Ψ

(
x0, x, u

1
, u

2

)
= 0, i = 1, . . . , N,

where Xi
2
(i = 1, . . . , N) are basis operators of the algebras L or K.

Lemma 2. The functions

u, u0, u00

S1 = uaua, S2 = uaa, S3 = uauabub,
S4 = uabuab, S5 = uauabubcuc, S6 = uabubcuca,
S7 = uau0a, S8 = u0au0a, S9 = u0au0buab

(16)

form the fundamental system of second–order differential invariants of the algebra AE(1)⊕
AE(3). Here, a, b, c = 1, 2, 3, we mean summation from 1 to 3 over the repeated indices,

ua =
∂u

∂xa
, uab =

∂2u

∂xa∂xb
.

The lemma is proved in the same way as it is done in the paper by Fushchych and
Yegorchenko [4].

Theorem 3. The functions Λj (j = 1, 2, . . . , 10) given below form the basis of the funda-
mental system of differential invariants of the second-order of the algebra L:

1) Λ1 = u00u
−2
0 , Λ2 = S2S

−1
1 , Λ3 = S3S

−2
1 , Λ4 = S4S

−2
1 ,

Λ5 = S5S
−3
1 , Λ6 = S6S

−3
1 , Λ7 = S7u

−1
0 S−1

1 , Λ8 = S8u
−2
0 S−1

1 ,

Λ9 = S9u
−2
0 S−2

1 , Λ10 = u,

if the generators D1, D2 are of the form (8).

2) Λ1 = S1u
−1, Λ2 = S2, Λ3 = S3u

−1, Λ4 = S4, Λ5 = S5u
−1,

Λ6 = S6, Λ7 = S7u
−1
0 , Λ8 = S8uu

−2
0 , Λ9 = S9uu

−2
0 , Λ10 = u00uu

−2
0 ,

if the generators D1, D2 are of the form (9).

3) Λ1 = u4−2ku−2
0 Sk

1 , Λ2 = u2u−2
0 Sk

2 , Λ3 = u8−3ku−4
0 Sk

3 ,

Λ4 = u8−2ku−4
0 Sk

4 , Λ5 = u12−4ku−6
0 Sk

5 , Λ6 = u12−3ku−6
0 Sk

6 ,

Λ7 = u−k+4u−k−2
0 Sk

7 , Λ8 = u4u−2k−2Sk
8 , Λ9 = u−k+8u−2k−2Sk

9 ,

Λ10 = uu−2
0 u00,
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if the generators D1, D2 are of the form (10).

4) Λ1 = u−3u00, Λ2 = uS2S
−1
1 , Λ3 = uS3S

−2
1 , Λ4 = u2S4S

−2
1 ,

Λ5 = u2S5S
−3
1 , Λ6 = u3S6S

−3
1 , Λ7 = u−1S7S

−1
1 , Λ8 = u−2S8S

−1
1 ,

Λ9 = u−1S9S
−2
1 , Λ10 = u−2u0,

if the generators D1, D2 are of the form (11).

5) Λ1 = u−6
0 u2

00 exp(2u
−1
0 )S1,

Λ2 = u−6
0 u00 exp(2u−1

0 )[u00S1 + u2
0S2 − 2u0S7],

Λ3 = u−14
0 u3

00 exp(4u
−1
0 )[u00S

2
1 − 2u0S1S7 + u2

0S3],

Λ4 = u−12
0 u2

00 exp(4u
−1
0 )[2u2

0(S1S8 + S2
7) + u2

00S
2
1+

u4
0S4 − 4u0u00S1S7 − 4u3

0S
−1
1 S3S7 + 2u2

0u00S3],

Λ5 = u−12
0 u4

00 exp(6u
−1
0 )[u−4

0 S5 − 4u−5S3S7+
u−6

0 (3S1S
2
7 + S2

1S8 + 2u00S1S3)− 4u−7
0 u00S

2
1S7 + u−8

0 u2
00S

3
1 ,

Λ6 = u−18
0 u3

00 exp(6u
−1
0 )[u6

0S6 − 2u5
0(S

2
3S7S

−2
1 + 2S5S7S

−1
1 )+

3u4
0(S1S9 + S3S8 + 2S2

7S3S
−1
1 + u00S5)− 2u3

0(3S1S7S8 + S3
7 + 6u00S3S7)+

3u2
0u00(S2

1S8 + 3S1S
2
7 + u00S1S3)− 6u0u

2
00S

2
1S7 + u3

00S
3
1 ],

Λ7 = u−7
0 u00 exp(2u−1

0 )(u00S1 − u0S7),

Λ8 = u−6
0 exp(2u−1

0 )(u2
00S1 − 2u0u00S7 + u2

0S8),

Λ9 = u−12
0 u00 exp(4u−1

0 )[u4
0S9 − 2u3

0(S7S8 + u00S3S7S
−1
1 )+

u2
0(3u00S

2
7 + 2u00S1S8 + u2

00S3)− 4u0u
2
00S1S7 + u3

00S
2
1 ],

Λ10 = uu−3
0 u00,

if the generators D1, D2 are of the form (12).
Here S1, S2, . . . , S9 are of the form (16).

Theorem 4. The functions Ωj (j = 1, 2, . . . , 11) given below form the basis of the funda-
mental system of differential invariants of the second-order of the algebra K:

1) Ω1 = Sk
1u

−2
0 , Ω2 = Sk

2u
−2
0 , Ω3 = Sk

3u
−4
0 , Ω4 = Sk

4u
−4
0 ,

Ω5 = Sk
5u

−6
0 , Ω6 = Sk

6u
−6
0 , Ω7 = Sk

7u
−(2+k)
0 , Ω8 = Sk

8u
−2(1+k)
0 ,

Ω9 = Sk
9u

−2(k+2)
0 , Ω10 = u00u

−2
0 , Ω11 = u,

if the generator D is of the form (13).

2) Ω1 = S1, Ω2 = S2u, Ω3 = S3u, Ω4 = S4u
2,

Ω5 = S5u
2, Ω6 = S6u

3, Ω7 = S7u
k, Ω8 = S8u

2k,
Ω9 = S9u

2k+1, Ω10 = u00u
2k−1, Ω11 = u0u

k−1,

if the generator D is of the form (14).
It follows from Theorems 3, 4 that for the case of the algebra L (15), reads as

F (Λ1,Λ2, . . . ,Λ10) = 0,

and for the case of the algebra K, (15) takes the form

Φ(Ω1,Ω2, . . . ,Ω11) = 0.
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