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Abstract

We study scalar representations of the Poincaré algebra p(1, n) with n ≥ 2. We present
functional bases of the first- and second-order differential invariants for a nonlinear
representation of the Poincaré algebra p(1, 2) and describe new nonlinear Poincaré-
invariant equations.

0. Introduction

The classical linear Poincaré algebra p(1, n) can be represented by basis operators

pµ = igµν
∂

∂xν
, Jµν = xµpν − xνpµ, (1)

where µ, ν take values 0, 1, . . . , n; summation is implied over repeated indices (if they are
small Greek letters) in the following way:

xνxν ≡ xνx
ν ≡ xνxν = x2

0 − x2
1 − · · · − x2

n,
gµν = diag (1,−1, . . . ,−1). (2)

We consider xν and xν equivalent with respect to summation. Algebra (1) is an invari-
ance algebra of many important equations of mathematical physics, such as the nonlinear
wave equation

✷u = F (u)

or the eikonal equation

uαuα = 0,

and such invariance reflects compliance with the Poincaré relativity principle. Poincaré-
invariant equations can be used for construction of meaningful mathematical models of
relativistic processes. For more detail, see [11].
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In paper [8], scalar representations of the algebra p(1, 1) were studied, and it appeared
that there exist nonlinear representations which are not equivalent to (1). Here, we inves-
tigate the same possibility for the algebra p(1, n) with n ≥ 2. We prove that there is one
representation for p(1, 2) which is nonlinear and non-equivalent to (1). For n > 2, there
are no scalar representations non-equivalent to (1).
To describe invariant equations with respect to our new representation, we need its

differential invariants. A functional basis of these invariants is presented below together
with examples of new nonlinear Poincaré-invariant equations.

1. Construction of a new representation for the scalar Poincaré algebra

The Poincaré algebra p(1, 2) is defined by the commutational relations

[J01, J02] = iJ12, [J01, J12] = iJ02, [J02, J12] = −iJ01; (3)

[Pµ, Jµν ] = iPν , µ, ν = 0, 1, 2; (4)

[Pµ, Pν ] = 0. (5)

We look for new representations of the operators Pµ, Jµν in the form

X = ξµ(xµ, u)∂xµ + η(xµ, u)∂u (6)

We get from (3), (4), (5) that up to equivalence with respect to local transformations
of xµ and u, we can take Pµ, Jµν in the following form:

pµ = igµν
∂

∂xν
,

Jµν = xµpν − xνpµ + ifµν(u)∂u,

(
∂u ≡ ∂

∂u

)
.

(7)

We designate f01 = a, f02 = b, f12 = c and get from (2) the conditions on these
functions:

abu − bau = c, acu − cau = b, bcu − cbu = −a.
Whence

c2 = a2 + b2, a = br, c = b(1 + r2)1/2, b =
1(

ln
(
r +

√
1 + r2

))
u

,

where r is an arbitrary function of u.
Up to a transformation u → ϕ(u), we can consider the following nonlinear representa-

tion of the operators Jµν :

J01 = −i (x0∂1 + x1∂0 + sinu∂u) ,
J02 = −i (x0∂2 + x2∂0 + cosu∂u) ,
J12 = −i (x1∂2 − x2∂1 + ∂u) .

(8)

It is easily checked that the representation Pµ (1), Jµν (8) is not equivalent to the repre-
sentation (1).
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To prove that there are no representations of p(1, n) , n > 2, which would be non-
equivalent to (1), we take Pµ, Jµν in the form (6) and use the commutational relations of
the algebra p(1, n). Similarly to the previous case, we can take Pµ, Jµν in the form (7),
and get from commutation relations for Jµν that

f2
0a + f2

0b = f2
ab, f2

ab + f2
bc + f2

ac = 0, a, b, c = 1, . . . , n.

Whence all fµν = 0, what was to be proved.

2. First-order differential invariants for a nonlinear representation

Definition. The function F (x, u, u
1
, u

2
, . . . , u

m
), where x = (x0, x1, . . . , xn), u

k
is the set of

all k-th order partial derivatives of the function u, is called a dif ferential invariant for
the Lie algebra L with basis elements Xs of the form (6) if it is an invariant of the m-th
prolongation of this algebra:

m
XsF (x, u, u

1
, u

2
, . . . , u

m
) = λs(x, u, u

1
, u

2
, . . . , u

m
)F. (9)

Theoretical studies of differential invariants and their applications can be found in
[1–4].
Here, only absolute differential invariants are considered, for which all λs = 0. We

look for a first-order absolute differential invariant in the form F = F (u, u
1
). We use

designations u0 = x, u1 = y, u2 = z, and from (9) get the following defining conditions for
F :

sinuFu − xFy − yFx + cosu(xFx + yFy + zFz) = 0,
cosuFu − xFz − zFx − sinu(xFx + yFy + zFz) = 0,
Fu − yFz + zFy = 0.

From the above equations, we get the only non-equivalent absolute differential invariant
of the first order for the representation Pµ (1), Jµν (8):

I1 =
u0 − u1 cosu+ u2 sinu

u2
0 − u2

1 − u2
2

. (10)

The expressions

u0 − u1 cosu+ u2 sinu (11)

and

u2
0 − u2

1 − u2
2 = uµuµ (12)

are relative differential invariants for the representation Pµ (1), Jµν (8).



Differential Invariants for a Nonlinear Representation 203

3. Second-order differential invariants for a nonlinear representation

Here, we adduce a functional basis of second-order differential invariants for the represen-
tation Pµ (1), Jµν (8). These invariants are found using the system of partial differential
equations, obtained from the definition of differential invariants (9). The basis we present
contains six more invariants in addition to I1 (10).

I2 =
F1

(u2
0 − u2

1 − u2
2)3/2

, (13)

where
F1 = λ(u0 − u1 cosu+ u2 sinu) = u00 − 2u01 cosu+ 2u02 sinu+ u11 cos2 u−

−2u12 sinu cosu+ u12 sin2 u− u0u1 sinu− u0u2 cosu− u2
2 sinu cosu+

+u1u2(cos2 u− sin2 u) + u2
1 sinu cosu.

(14)

L is an operator of invariant differentiation for the algebra p(1, 2), Pµ (1), Jµν (8):

L = ∂0 − cosu∂1 + sinu∂2. (15)

Its first Lie prolongation has the form
1
L = L− (u1 cosu+ u2 sinu)uα∂uα .

I3 =
F2

(u2
0 − u2

1 − u2
2)2

, (16)

where

F2 =
1
L(u2

0 − u2
1 − u2

2). (17)

The remaining invariants from our chosen basis do not contain trigonometric functions.
To construct them, we use second-order differential invariants of the standard linear scalar
representation of p(1, 2) (1) [5]. The notations used for these invariants are as follows:

r = u2
0 − u2

1 − u2
2, S1 = ✷u, S2 = uµνuµν , S3 = uµuµνuν ,

S4 = uµνuµαuνα, S5 = uµuµνuναuα.
(18)

It is easy to see that the expressions r, S1, S2, S3, S4, S5, where µ, ν, α = 0, 1, 2, are func-
tionally independent. The absolute differential invariants of the nonlinear representation
of p(1, 2) I4, I5, I6, I7 look as follows:

I4 = (S3 − rS1)r−3/2, I5 = (S2r
2 − S2

3)r
−3, I6 = (S5r − S2

3)r
−3,

I7 =
(
rS4 − 3(S1S5 − S2

1S3 +
1
3
rS3

1

)
r−5/2.

(19)

Proof of the fact that the invariants I1, I2, . . . , I7 present a functional basis of absolute
differential invariants of the nonlinear representation of p(1, 2) consists of the following
steps:
1. Proof of functional independence.
2. Proof of completeness of the set of invariants.
The first step is made by direct verification. The second requires calculation of the rank

of the basis of the non-linear representation of p(1, 2). The rank of the set 〈J01, J02, J12〉
(8) is equal to 2, and F

(
u, u

1
, u

2

)
depends on 9 variables. So, a complete set has to consist

of 7 invariants.
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4. Examples of invariant equations and their symmetry

The equation

u0 − u1 cosu+ u2 sinu = 0 (20)

is invariant with respect to the algebra p(1, 2) with basis operators Pµ (1), Jµν (8). The
following theorem describes its maximal symmetry:

Theorem 1. Equation (20) is invariant with respect to an infinite-dimensional algebra
generated by operators

X = ξ0(x, u)∂0 + ξ1(x, u)∂1 + ξ2(x, u)∂2 + η(x, u)∂u,

where

η = η(u, x1 + x0 cosu, x2 − x0 sinu),

ξ0 = ξ0(x0, u, x1 + x0 cosu, x2 − x0 sinu),

ξ1 = ϕ1(u, x1 + x0 cosu, x2 − x0 sinu) + ηx0 sinu− ξ0 cosu,

ξ2 = ϕ2(u, x1 + x0 cosu, x2 − x0 sinu) + ηx0 cosu+ ξ0 sinu;

η, ξ0, ϕ1, ϕ2 are arbitrary functions of their arguments.

The theorem is proved by means of the Lie algorithm [6, 7, 12].
The infinite-dimensional algebra described above contains as subalgebras the Poincaré

algebra p(1, 2) (operators Pµ of the form (1), Jµν of the form(8)) and also its extension
- a nonlinear representation of the conformal algebra c(1, 2). For details on nonlinear
representations of c(1, 2), see [10]. A basis of this algebra is formed by operators Pµ (1),
Jµν (8),

D = xµ∂µ, Kν = 2xνxµ∂µ − x2∂ν + iην(x, u)∂u; µ, ν = 0, 1, 2, (21)

where

η0 = 2(x1 sinu+ x2 cosu), η1 = −2(x2 − x0 sinu), η2 = 2(x1 + x0 cosu).

Equation (20) has the general solution

u = Φ(x1 + x0 cosu, x2 − x0 sinu).

The transformation

ũ = u, x̃0 = x0, x̃1 = x1 + x0 cosu, x̃2 = x2 − x0 sinu

applied to (20) yields the equation

ũx̃0
= 0. (22)
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A simplest linear equation (22) appears to be invariant with respect to the following
nonlinear representation of p(1, 2):

P̃0 = i(cosu∂1 − sinu∂2 + ∂0), P̃1 = −i∂1, P̃2 = −i∂2,

J̃01 = −i
(
(x0 sin2 u− x1 cosu)∂1 − sinu(x1 − x0 cosu)∂2+

+(x1 − x0 cosu)∂0 + sinu∂u

)
,

J̃02 = −i
(
(x0 cos2 u− x2 cosu)∂2 + cosu(x2 + x0 cosu)∂1+

+(x2 + x0 sinu)∂0 − cosu∂u

)
,

J̃12 = −i(x1∂2 − x2∂1 + ∂u).

Examples of explicit solutions for equation (20):

u =
cos−1 c

(x2
1 + x2

2)−1/2
+ tan−1

(
x1

x2

)
; u =

cos−1 x1

c− x0
;

u = tan−1
(
c− x1

x2

)
; u = 2 tan−1

(
c+ x0 + x1

x2

)
.
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