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and Painlevé Analysis of Nonintegrable

Wave Equations

Norbert EULER, Ove LINDBLOM, Marianna EULER and Lars-Erik PERSSON

Department of Mathematics, Lule̊a University of Technology, S-971 87 Lule̊a, Sweden

Abstract

In performing the Painlevé test for nonintegrable partial differential equations, one ob-
tains differential constraints describing a movable singularity manifold. We show, for a
class of wave equations, that the constraints are in the form of Bateman equations. In
particular, for some higher dimensional wave equations, we derive the exact relations,
and show that the singularity manifold condition is equivalent to the higher dimen-
sional Bateman equation. The equations under consideration are: the sine-Gordon,
Liouville, Mikhailov, and double sine-Gordon equations as well as two polynomial field
theory equations.

1 Introduction

The Painlevé analysis, as a test for integrability of PDEs, was proposed by Weiss, Tabor
and Carnevale in 1983 [20]. It is an generalization of the singular point analysis for ODEs,
which dates back to the work of S. Kovalevsky in 1888. A PDE is said to possess the
Painlevé property if solutions of the PDE are single-valued in the neighbourhood of non-
characteristic, movable singularity manifolds (Ward [17], Steeb and Euler [15], Ablowitz
and Clarkson [1]). Weiss, Tabor and Carnevale [20] proposed a test of integrability (which
may be viewed as a necessary condition of integrability), analogous to the algorithm given
by Ablowitz, Ramani and Segur [2] to determine whether a given ODE has the Painlevé
property. One seeks a solution of a given PDE (in rational form) in the form of a Laurent
series (also known as the Painlevé series)

u(x) = φ−m(x)
∞∑

j=0

uj(x)φj(x), (1.1)

where uj(x) are analytic functions of the complex variables x = (x0, x1, . . . , xn−1) (we do
not change the notation for the complex domain), with u0 �= 0, in the neighbourhood of a
non-characteristic, movable singularity manifold defined by φ(x) = 0 (the pole manifold),
where φ(x) is an analytic function of x0, x1, . . . , xn−1. The PDE is said to pass the
Painlevé test if, on substituting (1.1) in the PDE, one obtains the correct number of
arbitrary functions as required by the Cauchy-Kovalevsky theorem, given by the expansion
coefficients in (1.1), whereby φ should be one of arbitrary functions. The positions in the
Painlevé expansion where arbitrary functions are to appear, are known as the resonances.
If a PDE passes the Painlevé test, it is usually (Newell et al [13]) possible to construct
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Bäcklund transformations and Lax pairs (Weiss [18], Steeb and Euler [15]), which proves
the necessary condition of integrability.
Recently much attention was given to the construction of exact solutions of noninte-

grable PDEs by the use of a truncated Painlevé series (Cariello and Tabor [3], Euler et al.
[10], Webb and Zank [17], Euler [5]). On applying the Painlevé test to nonintegrable PDEs,
one usually obtains conditions on φ at resonances; the singular manifold conditions. With
a truncated series, one usually obtains additional constraints on the singularity manifolds,
leading to a compatibility problem for the solution of φ.
In the present paper, we show that the general solution of the Bateman equation,

as generalized by Fairlie [11], solves the singularity manifold condition at the resonance
for a particular class of wave equations. For the n-dimensional (n ≥ 3) sine-Gordon,
Liouville, and Mikhailov equations, the n-dimensional Bateman equation is the general
solution of the singularity manifold condition, whereas, the Bateman equation is only a
special solution of the polynomial field theory equations which were only studied in two
dimensions. For the n-dimensional (n ≥ 2) double sine-Gordon equation, the Bateman
equation also solves the constraint at the resonance in general.

2 The Bateman equation for the singularity manifold

The Bateman equation in two dimensions has the following form:

φx0x0φ
2
x1
+ φx1x1φ

2
x0

− 2φx0φx1φx0x1 = 0. (2.2)

In the Painlevé analysis of PDEs, (2.2) was first obtained by Weiss [19] in his study of
the double sine-Gordon equation. As pointed out by Weiss [19], the Bateman equation
(2.2) may be linearized by a Legendre transformation. Moreover, it is invariant under the
Moebius group. The general implicit solution of (2.2) is

x0f0(φ) + x1f1(φ) = c, (2.3)

where f0 and f1 are arbitrary smooth functions and c an arbitrary constant. Fairlie [11]
proposed the following generalization of (2.2) for n dimensions:

det




0 φx0 φx1 · · · φxn−1

φx0 φx0x0 φx0x1 · · · φx0xn−1

φx1 φx0x1 φx1x1 · · · φx1xn−1

...
...

...
...

...
φxn−1 φx0xn−1 φx1xn−1 · · · φxn−1xn−1



= 0. (2.4)

We call (2.4) the n-dimensional Bateman equation. It admits the following general implicit
solution

n−1∑
j=0

xj fj(φ) = c, (2.5)

where fj are n arbitrary functions.
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Let us consider the following direct n-dimensional generalization of the well-known
sine-Gordon, Liouville, and Mikhailov equations, as given respectively by

✷nu+ sinu = 0,

✷nu+ exp(u) = 0,

✷nu+ exp(u) + exp(−2u) = 0.
(2.6)

By a direct n-dimensional generalization, we mean that we merely consider the d’Alembert
operator ✷ in the n-dimensional Minkowski space, i.e.,

✷n :=
∂2

∂x2
0

−
n−1∑
j=1

∂2

∂x2
j

.

It is well known that the above given wave equations are integrable if n = 2, i.e., time
and one space coordinates. We call PDEs integrable if they can be solved by an inverse
scattering transform and there exists a nontrivial Lax pair (see, for example, the book of
Ablowitz and Clarkson [1] for more details). For such integrable equations, the Painlevé
test is passed and there are no conditions at the resonance, so that φ is an arbitrary
function.
Before we state our proposition for the singularity manifold of the above given wave

equations, we have to introduce some notations and a lemma. We call the (n+1)×(n+1)-
matrix, of which the determinant is the general Bateman equation, the Bateman matrix
and denote this matrix by B, i.e.,

B :=




0 φx0 φx1 · · · φxn−1

φx0 φx0x0 φx0x1 · · · φx0xn−1

φx1 φx0x1 φx1x1 · · · φx1xn−1

...
...

...
...

...
φxn−1 φx0xn−1 φx1xn−1 · · · φxn−1xn−1




. (2.7)

Definition. Let

Mxj1
xj2

...xjr

denote the determinant of the submatrix that remains after the rows and columns contain-
ing the derivatives φxj1

, φxj2
, . . . , φxjr

have been deleted from the Bateman matrix (2.7).
If

j1, . . . , jr ∈ {0, 1, . . . , n − 1}, j1 < j2 < · · · < jr, r ≤ n − 2, for n ≥ 3,

then Mxj1
xj2

...xjr
are the determinants of Bateman matrices, and we call the equations

Mxj1
xj2

...xjr
= 0 (2.8)

the minor Bateman equations of (2.4).

Note that the n-dimensional Bateman equation (2.4) has n!/[r!(n−r)!] minor Bateman
equations. Consider an example. If n = 5 and r = 2, then there exist 10 minor Bateman
equations, one of which is given by Mx2x3 , i.e.,

det



0 φx0 φx1 φx4

φx0 φx0x0 φx0x1 φx0x4

φx1 φx0x1 φx1x1 φx1x4

φx4 φx0x4 φx1x4 φx4x4


 = 0. (2.9)
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Note that the subscript of M , namely x2 and x3, indicates that the derivatives of φ w.r.t.
x2 or x3 do not appear in the minor Bateman equation.
We can now state the following

Lemma. The Bateman equation (2.4) is equivalent to the following sum of minor Bate-
man equations

n−1∑
j1,j2,...,jr=1

Mxj1
xj2

...xjr
−

n−1∑
j1,j2,...,jr−1=1

Mx0xj1
xj2

...xjr−1
= 0, (2.10)

where j1, . . . , jr ∈ {1, . . . , n − 1}, j1 < j2 < · · · < jr, r ≤ n − 2, n ≥ 3.

Proof. It is easy to show that the general solution of the n-dimensional Bateman equation
satisfies every minor Bateman equation in n dimensions identically. Thus, equations (2.4)
and (2.10) have the same general solution and are therefore equivalent. ✷

Theorem 1. For n ≥ 3, the singularity manifold condition of the direct n-dimensional
generalization of the sine-Gordon, Liouville and Mikhailov equations (2.6), is given by the
n-dimensional Bateman equation (2.4).

The detailed proof will be presented elsewhere. Let us sketch the proof for the sine-
Gordon equation. By the substitution

v(x) = exp[iu(x)],

the n-dimensional sine-Gordon equation takes the following form:

v✷nv − (
nv)2 +
1
2

(
v3 − v

)
= 0, (2.11)

where

(
nv)2 :=
(

∂v

∂x0

)2

−
n−1∑
j=1

(
∂v

∂xj

)2

.

The dominant behaviour of (2.11) is 2, so that the Painlevé expansion is

v(x) =
∞∑

j=0

vj(x)φj−2(x).

The resonance is at 2 and the first two expansion coefficients have the following form:

v0 = −4 (
nφ)2 , v1 = 4✷nφ.

We first consider n = 3. The singularity manifold condition at the resonance is then given
by

det



0 φx0 φx1 φx2

φx0 φx0x0 φx0x1 φx0x2

φx1 φx0x1 φx1x1 φx1x2

φx2 φx0x2 φx1x2 φx2x2


 = 0,

which is exactly the 2-dimensional Bateman equation as defined by (2.4).
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Consider now n ≥ 4. At the resonance, we then obtain the following condition

n−1∑
j1,j2,...,jn−3=1

Mxj1
xj2

...xjn−3
−

n−1∑
j1,j2,...,jn−4=1

Mx0xj1
xj2

...xjn−4
= 0, (2.12)

where

j1, . . . , jn−3 ∈ {1, . . . , n − 1}, j1 < j2 < · · · < jn−3,

i.e., Mxj1
xj2

...xjn−3
and Mx0xj1

xj2
...xjn−4

are the determinants of all possible 4×4 Bateman
matrices. By the Lemma give above, equation (2.12) is equivalent to the n-dimensional
Bateman equation (2.4).
The proof for the Liouville and Mikhailov equations is similar.
The wave equations studied above have the common feature that they are integrable

in two dimensions. Let us consider the double sine-Gordon equation in n dimensions:

✷nu+ sin
u

2
+ sinu = 0. (2.13)

It was shown by Weiss [19] that this equation does not pass the Painlevé test for n = 2,
and that the singularity manifold condition is given by the Bateman equation (2.2). For
n dimensions, we can state the following

Theorem 2. For n ≥ 2, the singularity manifold condition of the n-dimensional double
sine-Gordon equation (2.13) is given by the n-dimensional Bateman equation (2.4).

The proof will be presented elsewhere.
In Euler et al. [4], we studied the above wave equations with explicitly space- and

time-dependence in one space dimension.

3 Higher order singularity manifold conditions

It is well known that in one and more space dimensions, polynomial field equations such
as the nonlinear Klein-Gordon equation

✷2u+m2u+ λun = 0 (3.14)

cannot be solved exactly for n = 3, even for the case m = 0. In light-cone coordinates,
i.e.,

x0 −→ 1
2
(x0 − x1), x1 −→ 1

2
(x0 + x1),

(3.14) takes the form

∂2u

∂x0∂x1
+ un = 0, (3.15)

where we let m = 0 and λ = 1. The Painlevé test for the case n = 3 was performed by
Euler et al. [10]. We are now interested in the relation between the Bateman equation
and the singularity maifold condition of (3.15) for the case n = 3 as well as n = 2.
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First, we consider equation (3.15) with n = 3. Performing the Painlevé test (Euler et
al. [10]), we find that the dominant behaviour is −1, the resonance is 4, and the first
three expansion coefficients in the Painlevé expansion are

u2
0 = 2φx0φx1 ,

u1 = − 1
3u2

0

(u0φx0x1 + u0x1φx0 + u0x0φx1) ,

u2 =
1
3u2

0

(
u0x0x1 − 3u0u

2
1

)
,

u3 =
1
u2

0

(u2φx0x1 + u2x1φx0 + u2x0φx1 + u1x0x1 − 6u0u1u2) .

At the resonance, we obtain the following singularity manifold condition:

Φσ − (φx0Φx1 − φx1Φx0)
2 = 0, (3.16)

where Φ is the two-dimensional Bateman equation given by (2.2) and

σ = (24φx0φ
6
x1

φx0x0x0φx0x0 − 54φ2
x0

φ5
x1

φx0x0φx0x0x1 − 18φ2
x0

φ5
x1

φx0x1φx0x0x0

+18φ3
x0

φ4
x1

φx0x1φx0x0x1 + 36φ
3
x0

φ4
x1

φx0x0φx0x1x1 − 3φ2
x0

φ6
x1

φx0x0x0x0

+36φ4
x0

φx1x1φ
3
x1

φx0x0x1 − 6φ4
x0

φx0x0φ
3
x1

φx1x1x1 + 18φ
4
x0

φ3
x1

φx0x1φx0x1x1

−6φ3
x0

φx1x1φ
4
x1

φx0x0x0 + 24φ
6
x0

φx1φx1x1φx1x1x1 − 54φ5
x0

φ2
x1

φx1x1φx0x1x1

−18φ5
x0

φ2
x1

φx0x1φx1x1x1 − 3φ6
x0

φ2
x1

φx1x1x1x1 + 12φ
5
x0

φ3
x1

φx0x1x1x1

−18φ4
x0

φ4
x1

φx0x0x1x1 + 12φ
3
x0

φ5
x1

φx0x0x0x1 + 48φx1φx0x1φ
5
x0

φ2
x1x1

−30φ3
x0

φ3
x1

φx0x0φx0x1φx1x1 + 3φ
2
x0

φ2
x0x0

φ4
x1

φx1x1 − 2φ3
x0

φ3
x1

φ3
x0x1

+3φ4
x0

φ2
x1

φx0x0φ
2
x1x1

− 15φ4
x0

φ2
x1

φ2
x0x1

φx1x1 − 20φ6
x0

φ3
x1x1

+48φx0φ
5
x1

φx0x1φ
2
x0x0

− 20φ6
x1

φ3
x0x0

− 15φ2
x0

φ4
x1

φ2
x0x1

φx0x0)/(3φ
2
x0

φ2
x1
).

Clearly, the general solution of the two-dimensional Bateman equation solves (3.16).
For the equation

∂2u

∂x0∂x1
+ u2 = 0, (3.17)

the singularity manifold condition is even more complicated. However, also in this case,
we are able to express the singularity manifold condition in terms of Φ. The dominant
behaviour of (3.17) is −2 and the resonance is at 6. The first five expansion coefficients
in the Painlevé expansion are as follows:

u0 = −6φx0φx1 ,

u1 =
1

φx0φx1 + u0
(u0x1φx0 + u0x0φx1 + u0φx0x1) ,

u2 = − 1
2u0

(
u0x0x1 + u2

1 − u1x1φx0 − u1x0φx1 − u1φx0x1

)
,

u3 = − 1
2u0

(u1x0x1 + 2u1u2) ,
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u4 = − 1
φx1φx0 + u0

(
u3φx0x1 + u2x0x1 + 2u1u3 + u3x1φx0 + u3x0φx1 + u2

2

)
,

u5 = − 1
6φx0φx1 + 2u0

(2u1u4 + 2u4φx0x1 + 2u4x0φx1 + 2u4x1φx0 + 2u2u3 + u3x0x1) .

At the resonance, the singularity manifold condition is a PDE of order six, which consists
of 372 terms (!) all of which are derivatives of φ with respect to x0 and x1. This condition
may be written in the following form:

σ1Φ+ σ2Ψ+ (φx0Ψx1 − φx1Ψx0 − σ3Ψ− σ4Φ)
2 = 0, (3.18)

where Φ is the two-dimensional Bateman equation (2.2), and

Ψ = φx0Φx1 − φx1Φx0 .

The σ’s are huge expressions consisting of derivatives of φ with respect to x0 and x1. We
do not present these expressions here. Thus, the general solution of the Bateman equation
satisfies the full singularity manifold condition for (3.17).
Solution (2.5) may now be exploited in the construction of exact solutions for the above

wave equations, by truncating their Painlevé series. A similar method, as was used in the
papers of Webb and Zank [17] and Euler [5], may be applied. This will be the subject of
a future paper.
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