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Abstract

In Wilhelm Fushchych’s address, ” Ansatz '95”, given to the first conference ”Sym-
metry in Nonlinear Mathematical Physics” [1], he listed many differential equations
on which he and others had done some symmetry analysis. In this talk, the present
author treats two of these equations rather extensively, using differential forms to
find the symmetries, based on a method by F. B. Estabrook and himself [2]. A short
introduction to the differential form method will be presented.

1 Introduction

Most calculations for symmetries of differential equations are done with the classical
method. However, in 1971 Frank B. Estabrook and the author published a method [2]
for finding the symmetries of differential equations, using a differential form technique,
with a geometrical flavor. We refer to that paper as paper 1. Since that technique has not
been used widely in the literature, I would like to review it, and then to apply it to two
equations cited by Fushchych in his talk ” Ansatz 95”, which he gave here at Kyiv at the
first conference on nonlinear mathematical analysis [1].

2 Differential forms

I give a brief review of differential forms here. A simple, clever definition of differential
forms, due to H. Flanders [3], is that differential forms are the things found under integral
signs. That gives an immediate picture of differential forms, but we need to look at their
foundation.

We begin by writing out a general tensor field, in terms of components with a basis
formed of tensor products of basis tangent vectors e; and 1-forms w;, as shown:

T:T.Z:{C%r'm..,ez‘®€k®-.-wm®w”®.... (1)

The components may be functions of position.
One may work in the "natural bases” for these spaces, written, for coordinates x*,

e; = 0/0x', W' = dx’ (2)
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Differential forms are now defined as totally antisymmetric covariant tensor fields, that is,
fields in which only the w® appear and in which the components are totally antisymmetric.
It is usual to use an antisymmetric basis written as

W AW AR :Z(—l)ﬂﬂ[u}i@wj@wk...], (3)

™

composed of antisymmetric tensor products of the w’. 7 represents a permutation of the
w', and the sum is over all possible permutations. The symbol A is called a hook or wedge
product. Then a form «, say, of rank p, or p-form, may be written as

o= aijkmwi A AW (4)

(p factors), with sums over i, j, k, ... (Typically the sum is written for i < j < k... to
avoid repetition.) A O-form is simply a function. It is common to use the natural basis
and to write p-forms as sums of hook products of p of the dz*, as

B = ﬁijk:..,d:ni Adx? A dx® ... (5)

We now may work with the set of differential forms on a manifold by itself. I give a brief
summary of the rules. They may be found in many references, such as paper I; a good one
for mathematical physicists is Misner, Thorne, and Wheeler [4]. Vectors will be needed in
defining the operations of contraction and Lie derivative.

2.1 Algebra of forms

Forms of the same rank comprise a vector space and may be added and subtracted, with
coefficients as functions on the manifold. Forms may be multiplied in terms of the hook
product. Multiplication satisfies a distribution rule

(@+B)ANy=any+BAy (6)
and a commutation rule
aAf=(-1)"BAa, (7)

where p = rank(a) and ¢ = rank(8). Thus, products of 1-forms, in particular, are an-
tisymmetric. This implies, if the base manifold is n-dimensional, that all forms of rank
greater than n vanish, since the terms would include multiples of the same 1-form, which
would be zero by antisymmetry. The number of independent p-forms in n-dimensional
space is (Z) and the total number of independent forms, from rank 0 to n, is 2".

2.2 Calculus of forms

We define the exterior derivative d as a map from p-forms to (p+1)-forms. If
v = fdz' Nda? A ... (8)
then d is defined by (sum on k)

dy = (0f J0x") dx® A da® N dad A ... 9)
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(one simply writes dy = df Adx* Adz’ ... and expands df by the chain rule.) The exterior
derivative satisfies these postulates:

Linearity:

dla+ B) = da+dp (10)
Leibnitz rule:

dlaNp)=daNp+(—1)Pands (11)

(p = rank()). In particular, if f is a function,
d(fa)=df Na+ fda.
Closure rule:
dda = 0 (12)

for any form «. A form § satisfying d@ = 0 is said to be ”closed”.
In three-dimensional space, these various rules are equivalent to many familiar vector
identities.

2.3 Contraction with a vector

Contraction with a vector () is a map from p-forms to (p-1)-forms, defined by, if v =

v4(0/0xY),

v - (apdz®) = viay, (13)

v (@AB) = (v a) AB+(~1PPan (v f), (14)
where p = rank(a). Thus,

v-dat =0’ (15)

Contractions may be added or multiplied linearly by a scalar.

2.4 Lie derivative

The Lie derivative £, is a generalization of the directional derivative and requires a vector
v for definition. It may be defined on tensors and geometrical objects in general, but
we consider only its definition on forms here. The Lie derivative of a p-form is another
p-form. If f is a function, then

£y f =v-df =v(0f)0x"), (16)
Lyda=d(£,a). (17)

Thus, £,(z') = v* and £,(dz’) = dv’ (dv' is to be expanded by the chain rule.) Further
identities are

Lo nB) = (£,0) AB+a A (£,5) (18)
and
Lya=v-da+dv-a). (19)

Applying the Lie derivative is often called dragging a form. If a Lie derivative is zero, the
form may be said to be invariant under the transformation represented by the dragging.
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3 Writing differential equations as forms

Any differential equation or a set of differential equations, ordinary or partial, may be
written in terms of differential forms. The method is straightforward (see paper I). One
first reduces the equation(s) to a set of first-order differential equations by introducing
new variables as necessary. As an example, consider the heat equation, where subscripts
indicate differentiation:

Upy = Ug. (20)

We define new dependent variables z = u,, w = uy, so that z; = w,, z, = w. We consider
a differentiable manifold in the five variables z,t, u, z, and w. On this manifold we intro-
duce a set of forms by inspection. These forms are chosen such that if we (a) consider the
dependent variables to be functions of the independent variables (a process called section-
ing) — so that we can write their exterior derivatives in terms of the independent variables
— and then (b) set the forms equal to zero (a process called annulling), we recover the
original differential equations. Thus, we simply restrict the forms to the solution manifold
of the differential equation(s).
For the heat equation, we first define

a=—du+ zdr + wdt. (21)
Sectioning gives

a=—(uydr + up dt) + zdx + wdt
and annulling gives z = u,;, w = u; back again. Now

da =dzdxr + dwdt (22)

where the hook product A is to be understood. Sectioning gives da = (z, dx + z; dt) dx +
(wydx + wedt)dt = zdtde + wydrdt = (w, — 2;) dx dt, since dedr = dtdt = 0 and
dt dr = —dz dt, and annulling gives w, = z; again. Finally, we write

B =dzdt —wdzrdt = (zp do + 2z dt) dt — wdz dt, (23)

giving w = z, when [ is annulled. Thus, the set {«,da, 5} — which we call the ideal I of
forms — represents the original equation(s) when sectioned and annulled.

The forms as given are not unique. For example, we may construct an alternate set
simply from z = u, and z; = uy, yielding the forms v = du dt—z dx dt and § = dz dt+du dx
and giving an alternate ideal I’ = {v,d}. These ideals should be closed, and they are:
dl c I and dI' C I, since df8 = da N dz, d6 =0, and dy = § A dx.

4 Invariance of the differential equations

It is now simple to treat the invariance of a set of differential equations. A set of equations
is invariant if a transformation leaves the equations still satisfied, provided that the original
equations are satisfied. In the formalism we have introduced, this is easily stated: the Lie
derivative of forms in the ideal must lie in the ideal:

Lyl C 1. (24)
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Then if the basis forms in the ideal are annulled, the transformed equations are also
annulled. In practice, this means simply that the Lie derivative of each of the (basis)
forms in [ is a linear combination of the forms in /. For the heat equation, by using the
ideal I, we get the equations

£ya = \a, (25)
which gives

Lyda =d i N a+ Ada, (26)
so that £, da is automatically in the ideal, and

£y B =B+ A3da+ o Na, (27)

where the \; and o are multipliers to be eliminated. The \; are functions (0-forms) and
o is an arbitrary 1-form. The resulting equations, after this elimination, are simply the
usual determining equations for the symmetry generators, the components v* of v — which
was called the isovector in paper 1.
For the example considered, we consider first Eq. (25). It is simplified by putting
H=v a=—v"+ 20" +w, (28)

where the superscripts indicate components of v. H is to be considered a function of all
variables and is as yet unspecified. Then, by Eq. (19),

Lya=v-da+dv-a)= A\« (29)
or
vidr — v"dz +vVdt — vldw + dH = M\ (—du + 2 dz + w dt). (30)

dH is to be expanded by the chain rule. We now set the coefficients of dz, dt, etc., to
zero. From the coefficient of du, we get \y = —H,. The other coefficients give, after
substitution for \p,

v = H, v*=-H,—zH,

o = H,, vY=-—H,—wH,. (31)

We note from Eq. (28) and Eq. (31) that
v =—H+2H, + wH,,. (32)

We do not need to consider da separately, as noted above.
We now expand Eq. (27), using the rules for Lie differentiation given in Eqgs. (16)
through (18), and also substitute for the forms on the right-hand side. We get

dv*dt + dzdv' —v" dzdt —wdv® dt — wdx dv'
= Mo(dzdt —wdzdt) + \3(dz dx + dw dt) (33)
+ (o1dx +ogdt + 03dz + o4 dw) A (—du + zdz + w dt),

in which the o; (which are the components of ¢), along with A and A3, are multipliers to
be eliminated. We do not include a du in o because it can be replaced by a.
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We now expand the dv’ by the chain rule and set the coefficients of all ten possible
basis 2-forms (dx dt,dz du, ...,dz dw) equal to zero. After elimination of the multipliers,
we get the determining equations, where commas indicate differentiation,

vtuw =0
t t t
Ve Fwo',, 420", = 07, —wvT iy, (34)
Ve =0 —wv®,, = —wvt,, +wto,, — 207, w2, .

Solution of these equations together with Egs. (31) and (32) now gives the usual symmetry
group, or isogroup, for the one-dimensional heat equation.
Invariant variables are now found in the usual way by solving the equation(s)

=Em )
v v v
Geometrically, this gives the characteristics for the first-order differential equation v-« =
0, in which we restore z = u;, w = uy.

Mathematically, this is equivalent to the traditional method of finding the invariances
of differential equations. So why spend time learning a new method?

(1) It is easy to apply. One reduces the set of differential equations to first-order equa-
tions by defining appropriate variables, writes them by inspection as differential forms,
writes out the Lie derivative equations and sets the coefficients of the various basis forms
to zero, and eliminates the multipliers. Calculations may be long because there may be
many equations and many multipliers to eliminate, but they are very straightforward. In
some cases many terms in the expansion drop out because of the antisymmetry of 1-forms,
simplifying the treatment. This happens in the second example discussed below.

(2) One may get some geometrical insight into the process because of the inherently
geometrical nature of forms. As an example, it leads immediately to the invariant surface
condition used in finding nonclassical symmetries(see paper I, also [5]). For treatments
that stress this geometrical nature, see Ref. [4] and [6]. (Forms may also be used in other,
related contexts, such as searching for Backlund transformations, conservation laws, etc.
[7])

(3) It allows the possibility for the independent variable components of the isovector
v to be functions of the dependent variables. Usually these components of v are auto-
matically assumed to be functions of only the independent variables, usually without loss
of generality. However, in the case of a hodograph transformation, for example, those
components do depend on the dependent variables.

(4) This method is nicely adaptable to computer algebraic calculations. As an example,
Paul Kersten [8] developed a very nice treatment many years ago, for use in REDUCE.
It enables one to set up the forms, find the determining equations, and then interactively
work on their solution. Ben T. Langton [9], a Ph.D. student of Edward Fackerell’s at the
University of Sydney, is just finishing work on a modification of that technique which will
improve its usefulness. There is also a MAPLE code which uses this technique [10]. See a
brief discussion of these by Ibragimov [11].

(5) It is easy to make Ansatzen in the variable dependence of the isovector components,
simply by specifying it when one writes out their exterior derivatives in the expansion of
the Lie derivatives.
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5 Short wave gas dynamic equation; symmetry reduction

This equation was cited by Fushchych in his Ansatz ’95 talk [1] at the last Kyiv conference.
It is his Eq. (4.4),

2y — 222 + Ug ) Uy + Uyy + 2 uy = 0. (36)

Only a brief mention of it, with a simple Ansatz, was given at that time. We give a longer
treatment here.
We define new variables

W= Uy, 2 = Uy; (37)
then Eq. (36) takes the form

2w — (4o + 2w)wy + 2y + 2 w = 0. (38)
We could write a 1-form here, to be annulled:

—du 4+ wdx + ug dt + zdy,

but it involves wu;, which is not one of our variables. So we write a 2-form by multiplying
this 1-form by dt in order to remove the unwanted term:

a = (—du+wdx + zdy) dt. (39)
Then da is a 3-form:

do = (dwdzx + dzdy) dt (40)
and the equation itself is expressed as the 3-form

B =2dwdz dy + (4= + 2w)dw dt dy + dz dt dx 4+ 2 w dt dx dy. (41)

We note that d is proportional to da, so that the ideal {«, do, 5} is closed.
We now consider

Lyo =l (42)

(8 and da are 3-forms and so are not included on the right-hand side.) In expansion of
this equation, most terms involve only the t-component of the isovector, v*, and they show
simply that v* = K (t), a function of ¢ only. The other terms involving dt then provide the
only other useful information; elimination of the multiplier A leaves four equations. These
are conveniently written by defining H = v* — wv® — z0Y. Then they become

v = —H,, v°=H,+zH",
vwW = —-H, vY=H,+wH,. (43)

v" then can be written as
v =H—-wH, — zH,. (44)

We now note that £, da = d\ A a + Ada, thus being in the ideal, so we need not write a
separate equation for it.
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The remaining equation is
£y =vl+oda+wAa, (45)

where v and ¢ are O-form multipliers and w is a 1-form multiplier. We now write out
the terms involving all 20 possible basis 3-forms and eliminate the multipliers. We see
immediately that v and vY are independent of v and z and that v* is independent of u, z
and w. Use of the equations shows that

H = —wA(x,y,t) - ZB(yat) —|—C'(x,y,t,u) (46)

with v* = A and vY = B; A, B, and C are as yet undetermined. Eventually we find
expressions for the generators, with two remaining equations, which are polynomials in z
and w. We equate the polynomial coefficients to zero and get these expressions for the
generators:

o= K,
vt o= a] = (P /AE" +J) -yl = N,
W= (y/2)(K'+J)+ L, (47)

v = u(2J - K')+ G,
v = w(J - K')+ Gq,
v = (32/2)(J — K') + (wy/2)(K" + J') + wL' + Gy,

where J, K, L and N are functions of ¢t and G is a function of x,y, and ¢. Primes indicate
d/dt. We also have

J= (1/3)K" - (4/3)(A + 2)K,
0 = 2Gu — 472Gy + Gyy + 2)\Gy, (48)
Gy = N'42N' —22K' +J)+y(L" +2L) + (y*/4)(K" + J" +2K" +2.J'),

From these equations, we may solve for an explicit expression for Gy,. Then the consis-
tency of (Gyy) » and (Gy) 4y yields the equation

A= 1D\ -4)K' =0. (49)

Thus, if A =1 or A =4, we may take K to be an arbitrary function of ¢.
We integrate the first of Egs. (48) to get

J=(1/3)K" = (4/9)(A + 2)K + 4a, (50)
where a is a constant. We also define a new function, «(t), by

o J+ K’ 2K 2\+4  2a
= - _ + = (51)
@ 2K 3K 9 K
We can also integrate for GG, but the expression is long and we do not write it here.
We now find the invariant independent variables for the system. We have, as in the

manner of Eq. (35),

dy Y ya! L
- o TE (52)
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Solution gives an invariant variable

§=ya+p (53)
where

8= —/K’lLa dt. (54)
From

de  v* 20/ K’ y? Ko yL' + N’

A LT L S (55)

we get the invariant variable
n =Ko’z — (1/2)Kad'y? — Kaf'y — v, (56)
where

v = / (—=N'a? + K3?) dt. (57)

We now can use £ and 7 as given in terms of K, «, 3, and + without ever referring back to
L, N, etc.

From
du  v" 3K’ 4ad/ G
@ =w - kTt (%8)
we get the invariant variable
F = K34 — / K2a*G dt. (59)

To get a solution of the original differential equation Eq. (36), we assume F' = F'(£, 7). To
evaluate the integral in Eq. (59), we need to write out G, substitute for x and y in terms
of ¢ and 7, do the t integrals while keeping ¢ and 7 constant, and then reexpress ¢ and 7
in terms of x and y. This is an extremely complicated procedure. One may simplify it,
however, by noting, by inspection, that the completed integral will be a polynomial in &
up to &%, also with terms 7, n¢, n€2, and n2. If these are replaced by their expressions in x
and y, these will yield terms in y up to y*, also =, zy, 2y?, and 22. So we write

u = pi+poy+p3y? +pay® + psyt + pex
+pray + psry® 4+ por? + K 3a 1 F (¢, n), (60)

where the p; are as yet undetermined functions of ¢, and substitute into Eq. (36). By
using the expressions for £ and n (Egs. (53) and (56)), identifying coefficients, redefining
F' to include some polynomial terms in order to simplify the equation, we finally get—in
which b is a new constant and a was defined in Eq. (50):

Fee — 2F, Fyy) + 18aF, + 4by = 0, (61)

(A =1)(A —4)K? = 9b + 8142, (62)
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(consistent with Eq. (49)), and

py = —1+d/a+K'/(2K),

ps = —(Ka)/(2Ka),

pr = —(KB)/(Ka),

pe = (B%/2—+'/K)/a?, (63)
ps = —(1/6)(ps + Aps — 2pspy + ba' /(K*av)),

ps = —(1/3)(y + Ap7 — 2prpo + 208’/ (K*a)),

ps = —(p6+ Aps — 2pepy + 2b7/(K>a?)),

and p; and pso are arbitrary. These are expressed in terms of the functions K, «, 3, and ~
that occur in the invariant variables £ and 7.

6 Nonlinear heat equation with additional condition

This equation also was cited by Fushchych in Ansatz ’95 [1], Egs. (3.29) and (3.30), which
are given here:

ur + V- [f(u)Vu] =0, (64)
ug + (2M (u)) " (Vu)? = 0. (65)

In Theorem 5 in that treatment, he showed that the first equation (here, Eq. (64)) is

conditionally invariant under Galilei operators if the second equation (Eq. (65)) holds.

Here we start with Eqs. (64) and (65) and study their joint invariance, a different problem.
If we define variables

q = Ug, T = Uy, § = Uz, (66)
we can write Egs. (64) and (65) as

up = —(2M) (P + 12 + 5%) (67)
and

—@2M)"H @ + 1%+ 8%) + (f@)a + (fr)y + (fs). = 0. (68)
Now we can write forms as follows:

o= —du— 2M)" Y +1r* + s?)dt + qdx + rdy + sdz, (69)

B8 = da+ (M )2M?*) (¢ +r* + s%)adt
= (M'2M?) (¢ + 72 + %) (qdz + rdy + sdz) dt
—(1/M)(qdq + rdr + sds) dt + dqg dx + dr dy + ds dz (70)

which combination gets rid of the du terms, and

v =g(u)(¢* +r? + s%)dz dy dz dt + (dgdy dz + dr dz dx + ds dz dy) dt, (71)
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where

g(u) = f7H(f = @M)™) (72)

and in all of which a prime indicates d/du. Now we assume that v* v¥,v*, and v are
functions of z,y, 2z, and ¢; v* is a function of u,zx,y,z, and ¢; and that v?,v", and v°
are linear in ¢, 7, and s (with additional terms independent of those variables), and with
coefficients which are functions of u,x,y, z, and t.

We now consider

£, = . (73)

Expansion of this equation, using the conditions stated above, shows that A = v%,,; it
has terms up to the quadratic in ¢, r, and s. Setting the coefficients of the terms in these
variables equal to zero and solving yields the expressions

ot = (),

VY = x4 o3y — o9z + (it + v,

vWo= Cy+ o1z — o031+ (ot + v, (74)
v* = €z+4 o9x — o1y + (3t + vs,

where the 0y, (;, and v; are constants, £ is linear in ¢, and 7(t) is quadratic in t. vZ, 0", v*,
and v* are quadratic in x,y, and z. The u dependence is not yet entirely determined
because M (u) and f(u) have not been specified.

From Eq. (73) we have, as before, £, da = Ada + dX A «, automatically in the ideal.

The remaining calculation is the determination of £, v and setting it equal to a linear
combination of «,da (or (3), and ~, and to eliminate the multipliers. This appears to be
a formidable task; however, by use of the assumptions and information we already have,
it turns out to be surprisingly easy.

We expand £, v and substitute the values for the v’ that we already have. After this cal-
culation, we find that there are terms proportional to dx dy dz dt, du dy dz dt, du dz dz dt,
dudzx dydt, and (dqdydz + drdzdx + dsdx dy)dt. We substitute for the latter sum of
three terms from Eq. (71), thus giving a term proportional to v and one proportional to
dx dy dz dt. In the three terms involving du, we substitute for du from Eq. (69). It is now
seen that £, is the sum of three terms: one proportional to 7, one proportional to «,
and one proportional to dx dy dz dt. Thus, £, is already in the desired form except for
the last term! But this last term cannot be represented as a sum of terms in «, 3, and ~,
as is seen by inspection. Hence its coefficient must vanish, and that condition provides
the remaining equations for the generators v*.

The coefficient has terms proportional to ¢> + r? + s2, ¢, 7, s, and a term independent
of those variables. Setting this last term equal to zero shows that & = 0. The ¢,r, and s
terms give equations which can be written collectively as

G(M' +gM) =0, i=1,2,3 (75)

The coefficient of ¢ + r? 4 s? gives a relation among the various functions of u. We may
now summarize the results.
In addition to Eqs. (74), with £ now constant, we get

n(t) = at + b, (76)
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where a and b are constant, and

v = M(Gx+ Gy + (32) + h(u),

vl = qJ+o3r—o9s+ (1M,
v = rd+o18— 03¢+ (M, (77)
v® = sJ 4 o09q— o1+ (3M,
where
J=M(Gz+ Qy+C2)+ W —¢&. (78)

The quadratic dependence on x, ¥y, and z has dropped out because of the condition & = 0.
We also have these relations among the functions of u: Egs. (72), (75) and the further
equations

B =hM'/M + 26 — a, (79)
[hM Y (M + gM)]' = 0. (80)

There are now two cases.

Case I. If
M +gM =0, (81)
then
fM =u/2+c, (82)

where ¢ is a constant. Integration for h from Eq. (79) now gives
h=kM + (26 — a)M/M—ldu, (83)

where k is a constant.
Case IL. If M'+ gM # 0, then all {; = 0. We may write h by Eq. (83), but now A must
satisfy the additional condition Eq. (80).

Fushchych’s Theorem 5 now follows: if M = u/(2f), the original equations are invariant
under a Galilean transformation

Gi = td; + Mz'd,. (84)
The general operator is then G = Y, (;G;, giving v* = (;t and v* = M (12 + Coy + (32),

a possible choice of generators from the above calculation. From Eq. (82) we see that his
conclusion thus holds in a slightly more general case, when the constant ¢ is not zero.
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