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Abstract

This paper deals with three strategies of integration of an n-th order ordinary diffe-
rential equation, which admits the r-dimensional Lie algebra of point symmetries.
These strategies were proposed by Lie but at present they are not well known. The
“first” and ”"second” integration strategies are based on the following main idea: to
start from an n-th order differential equation with r symmetries and try to reduce it
to an (n — 1)-th order differential equation with » — 1 symmetries. Whether this is
possible or not depends on the structure of the Lie algebra of symmetries. These two
approaches use the normal forms of operators in the space of variables (”first”) or in
the space of first integrals ("second”). A different way of looking at the problem is
based on the using of differential invariants of a given Lie algebra.

1. Introduction

The experience of an ordinary differential equation (ODE) with one symmetry which
could be reduced in order by one and of a second order differential equation with two
symmetries which could be solved may lead us to the following question: Is it possible
to reduce a differential equation with r symmetries in order by r? In full generality, the
answer is "no”. This paper deals with three integration strategies which are based on
the group analisys of an n-th order ordinary differential equation (ODE-n, n > 2) with r
symmetries (r > 1). These strategies were proposed by S. Lie (see [1-2]) but at present
they are not well known. We studied the connection between the structure of a Lie algebra
of point symmetries and the integrability conditions of a differential equation. We refer
readers to the literature where these approaches are described (see [3], [6], [7]).
Suppose we have an n-th order ordinary differential equation (ODE-n, n > 2)

y(n) =w (x,y,y’,...,y("fl)) , (1.1)

which admits r point symmetries X, Xo,..., X,. It is well known (due to Lie) that r <
n + 4.

Definition. The infinitesimal generator

X =¢len)y, + o)y, (1.2
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is called a point symmetry of ODE-n (1.1) if
X Do (2,9, .y ) =0 (2,9, y™)  (mod Y™ = w) (1.3)

holds; here,

_ 0 0 0
X0 = 5(%3/)% +77(1L”ay)a—y +77(1)($ay,y/)8—y, +o

(n-1) (1) __0 -y
n—1 / n—1
0 (ol )
is an extension (prolongation) X up to the n-th derivative.
Consider the differential operator
9,0 , -1\ __ 9
A_%-Fya_y_'_...—i-w(x,y,y,...,y )Oy("*l)' (1.5)

It is not difficult to see that A can formally be written as
A= % (mod y™ = w).
Proposition 1. Differential equation (1.1) admits the infinitesimal generator X =
€l gy +n(e0) g i (X0, 4] = ~(AE(e))A holds.
Concept of proof. Let ;(z,,1/,...,y™ 1), i = T, n be the set of functionally indepen-

dent first integrals of ODE-n (1.1); then {¢;}7,; are functionally independent solutions of
the partial differential equation

Ap = 0. (1.6)
It’s easy to show that ODE-n (1.1) admits the infinitesimal generator (1.2) iff X (1,

is a first integral of ODE-n (1.1) for all i = 1, n.
So, on the one hand, we have that the partial differential equations (1.6) and

k“*%ﬂwzo (1.7)

are equivalent iff X is a symmetry of (1.1). On the other hand, we have that (1.6) and
(1.7) are equivalent iff

[X("_l),A} =A (m, vy, ... ,y("_l)) A (1.8)

holds.

Comparing the coefficient of 88 on two sides of (1.8) yields A = —A(&(x,y)) |
x
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2. First integration strategy: normal forms of generators in
the space of variables

0

Take one of the generators, say, X; and transform it to its normal form X; = 95’
s

i.e., introduce new coordinates ¢ (independent) and s (dependent),where the functions
t(z,y), s(x,y) satisfy the equations X3¢t = 0, Xy3s = 1. This procedure allows us to
transform the differential equation (1.1) into

s = (t, s ..., S("71)> ) (2.1)

which, in fact, is a differential equation of order n — 1 (we take s’ as a new dependent
variable). Now we interest in the following question:
Does (2.1) really inherit » — 1 symmetries from (1.1), which are given by (2.2)7

D) 0
Y = X, n(t, 5) 5

The next theorem answers this question.

(2.2)

_ 0
Theorem 1. The infinitesimal generators Y; = Xi(n b n(t, 8)8— are the symmetries of
S
ODE-(n-1) (2.1) if and only if

[X17X7;] = )\iX].v )\7, = const, 1= 2,7‘, (23)

hold.

So, if we want to follow this first integration strategy for a given algebra of generators,
we should choose a generator X; at the first step (as a linear combination of the given
basis), for which we can find as many generators X, satisfying (2.3) as possible; choose
Y, and try to do everything again.

At each step, we can reduce the order of a given differential equation by one.
Example 1. The third-order ordinary differential equation 4y2y” = 18yy'y" — 15y

admits the symmetries

9 (2) o 0 n 0 @) , , 0
Xi=5 XD =ao—y -2 X = = :
Y7 o 2 Tor Y oy’ 4 oy’ 3 yay ty oy’ 4 oy

Remark. All examples presented in this paper only illustrate how one can use these
integration strategies.

Note the relations [X7, Xo] = X, [X1, X3] =0.

Transform X to its normal form by introducing new coordinates: t = y;s = z. Now
we have the ODE-2

o 38" 18ts’s” + 155"
S =
s 4t2'

with symmetries

8 +s//aan; Ysztg_sf/i
S

_ Jd_ 7 .
Yo=s57 ot " 95"

[Y2,Y3] = 0.
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Transform Y5 to its normal form: v = logt; u = log s’

9
2?

:B:cQ/ dy 1/2+63.
y% (cos (@log cly>)

11
o = 20" + ?u/ +

3. Second integration strategy: the normal form of a gene-
rator in the space of first integrals

We begin with the assumptions:

a) r=n;

b) X;,i = 1,n, act transitively in the space of first integrals, i.e., there is no linear
dependence between XZ»(n_l), i=1,n,and A.

We'll try to answer the following question:

Does a solution to the system of equations

(n—1) 0 0 (n-1) O >
X = — — ... =1 1
1oy (51 ar TMgy ttm gmn)e=t (3.1)
(n—1) 0 0 (n-1) O ) .
X! (&=t g T )=, =3.n, 2
Vo= (g Gyttt Je=0 i=2n (3.2)
0 0 0
Ap = — ... —_— = .
® <6x +y 3y +...+ way("—l)) v =0, (3.3)
exist?

A system of n homogeneous linear partial differential equations in n + 1 variables
(2,9, ...,y 1) (3.2)-(3.3) has a solution if all commutators between Xi(n_l), i = 2,n,and
A are linear combinations of the same operators. It’s easy to check that these integrability
conditions are fulfilled iff X;,7 = 2, n, generate an (n — 1)-dimensional Lie subalgebra in
the given Lie algebra of point symmetries.

Let ¢ be a solution to system (3.1)—(3.3), then

X x Y o= XY (X" Ve) - x Y (X177 Yg) =0 (3.4)
necessarily holds. On the other hand, we have

XX e =X rohx ) =l k=20 (35)

(3.4) and (3.5) do not contradict each other if and only if
cL=0, i=2n. (3.6)

All preceding reasonings lead us to the necessary condition of existence of the function
. This condition is also sufficient. Now we prove it. Let u # const be a solution to
system (3.2)—(3.3), then we have

[X{"‘l), X}”‘”} w=x""Y (X}”‘l)u) — xnY (Xf”‘l)u) -
= —xD (X§”‘1)u) -0, i=72n,
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that is, Xf”fl)u is a nonzero solution to system (3.2)—(3.3). Hence, anil)u = f(u). It is

d
not difficult to check that the function / Tu) is a solution to system (3.1)—(3.3).
U
Suppose that the integrability conditions for system (3.1)—(3.3) are fulfilled. Now we
dp 0 0
consider this system as a system of linear algebraic equations in —(’0, —SO, ey e We
oz’ Oy dy(n=1)
can solve this system using Cramer’s rule:
1 -1 1 -1
& omong) oY Lo Y
1 -1 1 -1
& om0y oY P 0 m ) opY
A=|: o : #0; PoAT o : ;
N I or N R
n— n—
En Mn M <o Mn 0 % 7 R 11
1 ... w (I VA VAR w
1 -1 1
IS 775) U%n ) & m 77§) 1
1 -1 1
& 0 Y ny' Y & mond 0
dp -1 dp -1
— = : : : J s =A Do :
% (1) oy | WY (1)
ne
&n 0 mn Tin n T Mn 0
1 O y// w 1 y/ /! 0
The differential form
de dy dy ... dy™Y
& m o’ oY
dp=AT" 1 1
& o) Y
1 o o ... w

is a differential of the solution ¢ to system (3.1)—(3.3).

Theorem 2. Suppose point symmetries X;,i = 1,n, act transitively in the space of first
integrals; then there exists a solution to the system X{n_l)w = 1 Xi(n_l)go =0, i =
2,n; Ap =0 if and only if X;, i = 2,n, generate an (n —1)-dimensional ideal in the given
Lie algebra of point symmetries. This solution is as follows:

de dy dy ... dy»b
1 n—1
§ N2 775) 775 )
f;L 77.n ?77(;1) ?77(1"._1)
1 o o ... w
o=/ @ D) | (3.7)
&1 m 77%1) "7% )
& momy oMy
&n 771(;1) Y
1 y/ y// w
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Now we can use ¢ (:c,y,y’, e ,y(”_l)) instead of y(» Y as a new variable. In new
variables, we have
y D =y (2 ) (3.8)
(n—2) 0 0 (n-2) O )
X =& i — . > — v, = 27 s .
i Sigg iy Tt gD i=2,n (3.9)
_9 . 9 (n-1) ), 0

System (3.8)—(3.10) is exactly what we want to achieve. Now we can establish an iterative
procedure.

12

Example 2. 2y'y" = 3y”#. This equation admits the 3-dimensional Lie algebra of point

symmetries with the basis.

o @_ 0 90 w0 d
LT oy 2 Yor Y oy’ 4 oy’ T Ox
and commutator relations: [X7, Xo] =0, [X1, X3] =0, [X2, X3] = —X3.
The given ODE-3 is equivalent to the equation {y,x} = 0, where

" 12

Y Yy
{y,z} = 1/2? - 3/4ﬁ

is Schwarz’s derivative.
dr dy dy dy’
z 0 —y =2y

0 1 0 0 3y//2
x 0 —y —2¢ Ly ; 902

y 9y ()01 A y Y7

2 Yy
1 y/ y// 3y
2y’
/2
Now we have the ODE-2: 3" = , which admits the generators
0 0 0
X(l): A A Xo = —-
2 Yor Y oy’ 57 ox’
dr dy dy
1 0 0
r 0 _y/ . , 2y/2
100 | p _/ y—o1 |, (y—¢1)?
A = ooy | T P2 = A, = log yR—
Ly
Yy—¢1
r_ (y — 901)2
EXp ¥2
ar +b

A general solution of the differential equation is given by the next function: y = nwt
cr
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4. Third integration strategy: differential invariants

Definition. Differential invariants of order k (DI-k) are functions

oY

! (k) T
w(x7y7y7"'7y ) 9 8y(k) 7_é07
that are invariant under the action of X1, ..., X, that is, satisfy r equations (i =1,7):
By — (etm )2tz L s ® I () WA DY

How can one find differential invariants? To do it, we must know two lowest order
invariants ¢ and ).

Theorem 3. Ifv (a:, TR ,y(l)) and ¢ (1’, TR ,y(s)) (I < s) are two lowest order
differential invariants, then

1) s <r ; 2) List of all functionally independent differential invariants is given by the
following sequence:

dp A
o g

Let X;, i = 1,7, be symmetries of (1.1), then we have the list of functionally indepen-
dent DI up to the n-th order:

Y, @,

do d(n—s)w

wugpvﬁa-‘-vdw(n_s)-

Express all derivatives y*), k > s, in terms 1, ¢, and derivatives (™ beginning with
the highest order. That will give ODE-(n — s):

/ —
H(lﬂ,@,w,---,dw(n_s)) =0

Unfortunately, this equation does not inherit any group information from (1.1). If it’s
possible to solve (4.2), then we have ODE-s

o (zv.d o y) = f (¥y,... M) (4.2)
with r symmetries.

Example 3. ODE-3 yy/y" = yy" + yy""? admits the 2-dimensional Lie algebra of point
fries X X 0 0
symmetries X; = —; =r— —y=—.
Y V7 or 2 ox y@y
/ /!

DI-0 does not exist. DI-1: ¢ = 2 DI-2: o = . Now we can find DI-3:
y y

d(p , y///y _ 3y//y/
_— = ()0 =
dip y(yy" — 2y"?)
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Express ¥, 4",y in terms of 1, ¢, ¢'. This procedure leads us to ODE-1: ¢ = % Hence,

we obtain ¢ = Cv or y”" = Cyy/, that is, we obtain ODE-2 with 2 symmetries, which can
be solved as

2d
v [ 20
Cy2+a
In conclusion, we have to note that we have discussed only some simple strategies. A

different way of looking at the problem is described in [9] and based on using both point
and nonpoint symmetries.
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